
www.manaraa.com

Louisiana State University
LSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

2001

The Role of Immunity in Resistance of Gulf Coast
Native Sheep to Haemonchus Contortus Infection.
Maria Teresa Pena
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact
gradetd@lsu.edu.

Recommended Citation
Pena, Maria Teresa, "The Role of Immunity in Resistance of Gulf Coast Native Sheep to Haemonchus Contortus Infection." (2001).
LSU Historical Dissertations and Theses. 246.
https://digitalcommons.lsu.edu/gradschool_disstheses/246

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_disstheses?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_disstheses?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_disstheses/246?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 
the text directly from the original or copy submitted. Thus, some thesis and 
dissertation copies are in typewriter face, while others may be from any type of 
computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality illustrations 
and photographs, print bleedthrough, substandard margins, and improper 
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript 
and there are missing pages, these will be noted. Also, if unauthorized 
copyright material had to be removed, a note will indicate the-deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and continuing 
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6” x 9” black and white 
photographic prints are available for any photographs or illustrations appearing 
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

THE ROLE OF IMMUNITY IN RESISTANCE OF GULF COAST NATIVE 
SHEEP TO HAEMONCHUS CONTORTUS INFECTION

A Dissertation

Submitted to the Graduate Faculty o f 
Louisiana State University and 

Agriculture and Mechanical College 
in partial fulfillment o f the 

requirements for the degree o f 
Doctor of Philosophy

in

The Interdepartmental Program in 
Veterinary Medical Sciences through the 

Department o f Epidemiology and Community Health

by
Maria Teresa Pena 

D.V.M. University o f  Buenos Aires, Argentina, 1989; 
MS, Louisiana State University, 1997;

May 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

UMI Number: 3010379

___  ®

UMI
UMI Microform 3010379 

Copyright 2001 by Bell & Howell Information and Learning Company. 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

ACKNOWLEDGMENTS

I would like to thank my major professor Dr. James Miller for his guidance 

and kindness throughout my graduate education. While working with him I not only 

acquired experience in the fields o f  Epidemiology and Parasitology, but I also 

learned how to work in a  team. I greatly appreciate his unconditional encouragement 

and support at times when I mostly needed it. I am also grateful tothe members o f my 

Committee: Dr. T. R. Klei, Dr. D. W. Horohov and Dr. M.E. Hugh Jones for the 

support and advice provided for my dissertation.

I would also like to thank the faculty and staff o f the Department 

Epidemiology and Community Health including Drs. M.G. Groves, S. Shane, R. A. 

Thompson, D.T. Scholl, Mr. J.P.T. Roberts, Mr. M.T. Kearney, Mrs. B. Elboume, 

Mrs. S. Barras, Mrs. J. Broussard, and Mrs. K. Harrington, for being like a family to 

me during my stay here. The help o f Mrs. S. Porcieu is highly appreciated.

A special thank to  the staff, graduate students and student workers in the lab, 

without their help I could not have accomplished my work. I am also grateful to Mr. 

T. Harding, staff and students working at the Central Research Station Sheep Unit for 

their kindly help with my research.

My studies and work would not have been possible without the support o f my 

friends and family. I would like to give special thanks to my parents Dr. R. V. and 

M.T. Pena who guided me with happiness and unconditional love throughout my life.

I thank the Almighty God for giving me health and joy and to whom I am 

grateful for giving me the opportunity to study and work in such a nice environment.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

TABLE OF CONTENTS

ACKNOWLEDGMENTS................................................................................................ ii

LIST OF TABLES............................................................................................................vi

LIST OF FIGURES........................................................................................................  ix

ABSTRACT........................................................................................................................x

CHAPTER ONE: GENERAL INTRODUCTION......................................................... I
1.1 .Background.......................................................................................................1
1.2. The Parasite, Life Cycle and Pathogenicity..............................................  4
1.3. Immune response to Gastrointestinal (GI) nematodes................................5
1.4. Research Objectives.................................................................................. 11
1.5. Hypothesis Testing....................................................................................  11
1.6 . References...................................................................................................... 11

CHAPTER TWO:PILOT STUDY: DOSE TITRATION OF
DEXAMETHASONE................................................................................... 19

2.1. Introduction................................................................................................... 19
2.2. Materials and Methods..................................................................................21

2.2.1. Animals...........................................................................................21
2.2.2. Hematology................................................................................... 22
2.2.3. Lympholiferation Assays.........................................................  22
2.2.4. Enzyme-linked Immunosorbent Assay (ELISA) for Antibodies

to Haemonchus contortus Whole Worm Antigen
(WWA).........................................................................................22

2.3. Results............................................................................................................23
2.3.1. WBC Differential.......................................................................... 23
2.3.2. Lymphoproliferation Assays........................................................23
2.3.3. ELISA for H. contortus WWA................................................... 25

2.4. Discussion......................................................................................................26
2.5. References......................................................................................................28

CHAPTER THREE: EFFECT OF CORTICOSTEROID IMMUNESUPPRESSION 
OF GULF COAST NATIVE NEONATAL LAMBS ON RESISTANCE TO 
HAEMONCHUS CONTORTUS INFECTION.............................................................. 30

3.1. Introduction................................................................................................... 30
3.2. Materials and Methods.................................................................................32

3.2.1. Animals...........................................................................................32
3.2.2. Fecal Egg Counts (FEC).............................................................. 33
3.2.3. Necropsy......................................................................................  33
3.2.4. Nematode Enumeration and Identification..............................  34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

3.2.5. Peripheral Blood Tests.............................................................. 34
3.2.5.1. Hematology....................................................................34
3.2.5.2. Lymphoproliferation Assays........................................34
3.2.5.3. Enzyme-linked Immunosorbent Assay (ELISA) for 
Antibodies to H. contortus Whole Worm Antigen (WWA).. 34

3.2.6. Lymph Node Lymphoproliferation A ssays...............................35
3.2.7. Brucellosis Card Test....................................................................35
3.2.8. Statistical Analysis....................................................................  36
3.3. Results............................................................................................... 36
3.3.1. Fecal Egg Counts (FEC)...........................................................  36
3.3.2. Total Nematode Counts at Necropsy........................................  36
3.3.3. Peripheral Blood Tests.............................................................. 37

3.3.3.1. Blood Packed Cell Volume......................................  37
3.3.3.2. White Blood Cell Differential.................................. 37
33.3.3. Lymphoproliferation Assays........................................38
3.3.3.4. ELISA for H. contortus WWA................................. 40

3.3.4. Proliferation Assays on Lymph Node Lymphocytes.............  41
3.3.5. Brucellosis Card Test.................................................................  41

3.4. Discussion......................................................................................................42
3.5. References..................................................................................................... 46

CHAPTER FOUR: EFFECT OF CORTICOSTEROID IMMUNESUPPRESSION 
OF GULF COAST NATIVE POST-WEANED LAMBS ON RESISTANCE TO 
HAEMONCHUS CONTORTUS INFECTION...............................................................50

4.1. Introduction....................................................................................................50
4.2. Materials and Methods................................................................................. 51

4.2.1. Experimental Design.................................................................  51
4.2.2. Fecal Egg Counts (FEC)...............................................................52
4.2.3. Necropsy.........................................................................................52
4.2.4. Peripheral Blood Tests............................................................... 52

4.2.4.1. Hematology....................................................................52
4.2.4.2. Lymphoproliferation Assays........................................53
4.2.4.3. Enzyme-linked Iimmunosorbent Assay (ELISA)—  53

4.2.5. Proliferation Assays on Lymph Node Lymphocytes................ 53
4.2.6. Statistical Analysis.......................................................................53

4.3. Results............................................................................................................53
4.3.1. Fecal Egg Count (FEC)................................................................ 53
4.3.2. Nematode Counts.......................................................................... 54
4.3.3. Peripheral Blood Tests..................................................................55

4.3.3.1. Blood Packed Cell Volume......................................  55
4.3.3.2. White Blood Cell Count Differential..........................55
4.3.3.3. Lymphoproliferation Assays........................................56
4.3.3.4. ELISA for H. contortus WWA....................................57

4.3.4. Proliferation Assays on Lymph Node Lymphocytes..............  59
4.3.5. Brucellosis Card Test.................................................................  59

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4.4. Discussion....................................................................................................... 60
4.5. References.......................................................................................................64

CHAPTER FIVE: EFFECTS OF CD4+ T LYMPHOCYTES DEPLETION ON 
RESISTANCE OF GULF COAST NATIVE SHEEP TO H  CONTORTUS 
INFECTION........................................................................................................................ 6 8

5.1. Introduction.....................................................................................................6 8

5.2. Materials and Methods.................................................................................. 70
5.2.1. Animals....................................................  70
5.2.2. Monoclonal Antibody Treatment.............................................. 71
5.2.3. Experimental Infections................................................................ 71
5.2.4. Fecal and Blood Samples.......................................................... 71
5.2.5. Necropsies.......................................................................................72
5.2.6. Flow Cytometry...........................................................................  72
5.2.7. FACS of CD4+ Lymphocytes from Mesenteric Lymph 

Nodes.....................................................................................................73
5.2.8. ELISA for H. contortus W WA.................................................... 73
5.2.9. Lymphoproliferation Assays........................................................73
5.2.10. Statistical Analysis...................................................................... 73

5.3 .Results...............................................................................................................74
5.3.1. Fecal Egg Counts (FEC)............................................................... 74
5.3.2. Nematode Counts.........................................................................  74
5.3.3. FACS............................................................................................. 74
5.3.4. FACS on Mesenteric Lymph Node Lymphocytes.................... 74
5.3.5. Peripheral Blood Tests................................................................  75

5.3.5.1. Blood Packed Cell Volume...................................... 75
5.3.5.2. White Blood Count Differential..................................78
5.3.5.3. ELISA for H. contortus WWA....................................78
5.3.5.4. Lymphoproliferation Assays....................................... 78

5.4. Discussion....................................................................................................... 79
5.5. References....................................................................................................... 81

CHAPTER SIX: GENERAL DISCUSSION..................................................................83
6.1. Discussion o f the Results.............................................................................. 83
6.2. Future Studies................................................................................................. 8 8

6.3. Conclusions.....................................................................................................89
6.4. References.......................................................................................................89

APPENDIX: TECHNIQUES AND REAGENTS.......................................................  92

VITA...................................................................................................................................  93

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

LIST OF TABLES

Table 2.1.Weekly mean white blood differential counts for ewes given 0.5 mg/kg 
(Group 1, n=2), 1.0 mg/kg (Group 2, n=2), and 2.0 mg/kg (group 3, n=2) 
dexamethasone.................................................................................................  24

Table 2.2. Mean lymphocyte proliferation (counts per minute) in response to
Concavalin A stimulation for ewes given 0.5 mg/kg (Group 1, n=2), 1.0 
mg/kg (Group 2, n=2) and 2.0 (Group 3, n=2) dexamethasone on weeks 3 
and 7 o f  treatment............................................................................................25

Table 2.3. Mean lymphocyte proliferation (counts per minute) in response to
Phytohemagglutinin stimulation for ewes given 0.5 mg/kg (Group 1, n=2), 
1.0 mg/kg (Group 2, n=2) and 2.0 (Group 3, n=2) dexamethasone on 
weeks 3 and 7 o f  treatment............................................................................. 25

Table 2.4. Mean lymphocyte proliferation (counts per minute) in response to
Pokeweed stimulation for ewes given 0.5 mg/kg (Group 1, n=2), 1.0 
mg/kg (Group 2, n=2) and 2.0 (Group 3, n=2) dexamethasone on weeks 3
and 7 o f  treatment............................................................................................26

Table 2.5. Total antibodies to H. contortus whole worm antigen expressed as mean 
percent OD for ewes (n=2 per group) given 3 dose levels o f  
dexamethasone............................................................................................... 26

Table 3.1. Mean nematode burden in abomasum, small intestine, and large intestine 
o f dexamethasone treated (T) and untreated (C) Gulf Coast Native 
neonatal lambs............................................................................................... 36

Table 3.2. Weekly mean white blood differential counts for dexamethasone treated 
(T, n=4) Gulf Coast Native neonatal lambs compared to untreated (C, n=4) 
Gulf Coast Native neonatal lambs............................................................  39

Table 3.3. Mean lymphocyte proliferation (counts per minute) in response to 
Concavalin A stimulation for dexamethasone treated Gulf Coast Native 
neonatal Iambs compared to untreated Gulf Coast Native neonatal Iambs 
on weeks —1, 6 , and 9 of dexamethasone treatment.................................... 40

Table 3.4. Mean lymphocyte proliferation (counts per minute) in response to
Phytohemagglutinin stimulation for dexamethasone treated Gulf Coast 
Native neonatal lambs to compared untreated Gulf Coast Native neonatal 
lambs, on weeks —1, 6 , and 9 o f  dexamethasone treatment........................ 40

Table 3.5. Means lymphocyte proliferation (counts per minute) in response to 
Pokeweed stimulation for dexamethasone treated Gulf Coast Native

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

neonatal lambs compared to untreated Gulf Coast Native neonatal lambs, 
on weeks —1, 6 , and 9 o f  dexamethasone treatment.................................... 40

Table 3.6. Mean percent OD to H. contortus whole worm antigen for dexamethasone 
treated Gulf Coast Native neonatal Iambs compared to untreated Gulf 
Coast Native neonatal lambs....................................................................... 41

Table 3.7. Mean lymphocyte proliferation (counts per minute) in response to 
Concavalin A and Phytohemagglutinin stimulation in abomasal lymph 
nodes o f  dexamethasone treated Gulf Coast Native neonatal Iambs 
compared untreated Gulf Coast Native neonatal lambs........................... 41

Table 3.8. Brucellosis card test results of dexamethasone treated Gulf Coast Native 
neonate lambs (T) compared to untreated Gulf Coast Native neonatal 
lambs (C) on vaccination (week 8  o f dexamethasone treatment) and 10 
days after vaccination (week 10 o f  dexamethasone treatment)...............42

Table 4.1. Mean nematode burden in the abomasum and small intestine of 
dexamethasone treated and untreated Gulf Coast Native post-weaned 
lambs................................................................................................................ 54

Table 4.2. Weekly mean white blood cell differential comparing dexamethasone
treated (T, n=8 ) Gulf Coast Native post-weaned lambs with untreated (C, 
n=7) Gulf Coast Native post-weaned lambs.................................................57

Table 4.3. Mean lymphocyte proliferation (counts per minute) in response to 
Concavalin A stimulation for dexamethasone treated Gulf Coast Native 
post-weaned lambs compared to untreated Gulf Coast Native post-weaned 
Iambs on weeks —1, 6 , and 9 of treatment..................................................  58

Table 4.4. Mean lymphocyte proliferation (counts per minute) in response to 
Phytohemagglutinin stimulation for dexamethasone treated Gulf Coast 
Native post-weaned lambs and untreated Gulf Coast Native post-weaned 
lambs on weeks —1, 6 , and 15 of treatment.................................................. 58

Table 4.5. Mean lymphocyte proliferation (counts per minute) in response to
Pokeweed stimulation in dexamethasone treated Gulf Coast Native post­
weaned lambs and untreated Gulf Coast Native post-weaned lambs on 
weeks—I, 6 , and 15 o f treatment................................................................  58

Table 4.6. Mean percent OD to Haemonchus contortus whole worm antigen in 
dexamethasone treated Gulf Coast Native post-weaned lambs and 
untreated Gulf Coast Native post-weaned lam bs....................................... 59

Table 4.7. Mean lymphocyte proliferation (counts per minute) in response to
Concavalin A, Phytohemagglutinin, and Pokeweed stimulation in

vu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

abomasa! lymph node lymphocytes o f  dexamethasone treated Gulf Coast 
Native post-weaned lambs and untreated Gulf Coast Native post-weaned 
lambs...................................................................................................................59

Table 4.8. Brucellosis card test results o f  dexamethasone treated (T) Gulf Coast 
Native post-weaned lambs compared to untreated (C) Gulf Coast Native 
post-weaned Iambs on vaccination (week 8  o f  dexamethasone treatment), 
1 0  days after vaccination (week 1 2 ), and at the end o f  the study (week 
16) 60

Table 5.1. Monoclonal antibody treatment schedule in Gulf Coast Native post­
weaned Iambs.....................................................................................................71

Table 5.2. Percent o f  CD4+ cells stained in CD4+ depleted (T) Gulf Coast Native 
post-weaned lambs compared to undepleted (C) Gulf Coast Native post­
weaned Iambs.....................................................................................................75

Table 5.3. Weekly mean white blood count differential in CD4+ depleted (T) Gulf 
Coast Native post-weaned lambs to undepleted (C) Gulf Coast Native 
post-weaned lambs............................................................................................79

Table 5.4. Weekly mean OD to Haemonchus contortus whole worm antigen in CD4+ 
depleted (T) Gulf Coast Native post-weaned lambs to undepleted (C) Gulf 
Coast Native post-weaned lam bs...................................................................79

Table 5.5. Mean stimulation index in response to Phytohemagglutinin, Concavalin A, 
and Pokeweed stimulation in CD4+ depleted Gulf Coast Native post­
weaned lambs to undepleted Gulf Coast Native post-weaned lambs  79

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

LIST OF FIGURES

Figure 3.1. Weekly mean fecal egg count comparing dexamethasone treated (T) Gulf 
Coast Native (GCN) neonatal lambs with untreated (C) Gulf Coast Native 
and Suffolk (S) neonatal lambs...............................................................  37

Figure 3.2. Weekly mean blood packed cell volume for dexamethasone treated (T) 
Gulf Coast Native neonatal lambs compared to untreated (C) Gulf 
Coast Native and Suffolk (S) neonatal lambs.......................................  38

Figure 4.1. Weekly mean fecal egg count comparing dexamethasone treated (T) 
Gulf Coast Native (GCN) post-weaned lambs with untreated (C) Gulf 
Coast Native post-weaned lambs....................................................................54

Figure 4.2. Weekly mean blood packed cell volume comparing dexamethasone 
treated (T) Gulf Coast Native (GCN) post-weaned lambs with untreated 
(C) Gulf Coast Native post-weaned lambs................................................. 56

Figure 5.1. Weekly mean fecal egg counts comparing CD4+ depleted (T) Gulf Coast 
Native post-weaned lambs to undepleted (C) Gulf Coast Native post­
weaned lambs.................................................................................................... 75

Figure 5.2. Histogram of number o f CD4+stained cells in a normal Gulf Coast Native 
post-weaned Iamb............................................................................................. 76

Figure 5.3. Histogram o f  number o f  CD4+stained cells in a depleted Gulf Coast 
Native post-weaned lam b.............................................................................  77

Figure 5.4. Weekly mean packed cell volume in CD4+ depleted (T) Gulf Coast 
Native post-weaned lambs to undepleted (C) Gulf Coast Native post­
weaned
lambs.................................................................................................................. 78

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

ABSTRACT

Haemonchus contortus is a  serious constraint for sheep production in tropical 

and subtropical regions of the world. The use o f  genetically resistant animals is a 

promising alternative for controlling nematode infections without relying on the use 

o f anthelmintics. Extensive epidemiological studies demonstrated that Gulf Coast 

Native sheep are naturally resistant to H. contortus infection, but the mechanism 

underlying this resistance is not well known. The main purpose of this research was 

to define the components o f the immune response that may be involved in resistance 

o f  GCN to H. contortus infection. Three studies were conducted. In the first study, a 

group o f  neonate lambs was treated with dexamethasone for ten weeks while grazing 

on pasture with their dams. All lambs were monitored weekly for blood packed cell 

volume (PCV), white blood cell differential, and fecal egg count (FEC) for the 

duration o f  the study. The second study was similar to the first one but post-weaned 

Iambs were used. They were kept in dirt floored pens and experimentally infected. 

Treated lambs showed higher FEC and nematode burden and lower PCV and 

antibody titer to H. contortus whole nematode antigen, compared to controls. These 

studies indicate that there is a component o f  the immune response that may play a 

role in the natural resistance o f GCN sheep to H. contortus infection. To further 

characterize components of the immune response, a third study was conducted in 

which a group o f  GCN lambs was depleted o f  their CD4+ T lymphocytes and 

challenge with H. contortus infective larvae. The lambs in the treatment group 

received serial injections o f mouse monoclonal antibody to sheep CD4+ T

x
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lymphocytes. Lambs in the treatment group showed higher FEC and nematode 

burden than the controls. These results indicated that CD4+ T lymphocytes were 

important in immunity  o f  GCN sheep to H. contortus infection. This research has 

contributed to the better understanding o f  the mechanism(s) underlying natural 

resistance o f  GCN sheep to Haemonchus contortus infection.

xi
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CHAPTER 1 

GENERAL INTRODUCTION

1.1. Background

Gastrointestinal (GI) nematode parasitism is a major problem in sheep 

production worldwide. In Pakistan, annual losses resulting from haemonchosis were 

estimated at US $781,945 (Javed et aL, 1992). Mcleod (1995) using a cost-benefit 

model estimated that nematodes cost the Australian sheep industry $222 million per 

year. In Kenya annual losses to the agriculture industry due to Haemonchus contortus 

were estimated at $26 million (Allonby, 1973). In a  survey conducted in by 

USD A/APHIS (USDA, 1996), GI nematode parasitism was reported as o f moderate to 

high concern to U.S. sheep producers (62% of the operations). In addition, GI nematode 

parasitism was a condition reported to be present in the previous 5 years in 49% o f the 

operations (USDA, 1996). Most parasite losses are subclinical, go unnoticed, are not 

measurable, and probably far exceed the estimates. Loss o f  production, costs o f 

anthelmintics, and animal death are some o f the major concerns associated with the 

widespread occurrence o f  infection with GI nematode parasites, particularly H. 

contortus. Chemical products are commonly used for the control o f  nematodes, but the 

evolution o f  anthelmintic resistance in nematode populations threatens the success o f 

drug treatment (Craig, 1993; Prichard, 1990; Sangster, 1999; Sangster and Gill, 1999; 

Waller, 1987, 1994). In  addition, there is an increasing awareness o f  environmental 

issues that may influence the use o f anthelmintics as more consumers demand animal 

products and pastures that are free o f  chemical residues. Due to these facts, there is a 

need for alternative approaches for controlling GI nematode parasites.

1
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One alternative is the use o f  vaccines against nematodes and such efforts have 

been directed against H. contortus. The first approach for vaccine development was the 

use o f  irradiation to attenuate infective larvae. Smith and Christie (1979) reported 

98.9% protection with an irradiated larvae vaccine against H. contortus. Vaccines made 

from excretory-secretory products from adult H. contortus worms induced protective 

immune responses that resulted in 6 8 % reduction in the number o f worms (Schailig and 

Van Leeuwen, 1997). Finally, the most recent finding is that proteins present at the 

surface o f the parasite’s gut, known as hidden antigens, have been shown to confer 

protection (Andrews et al., 1995, Smith et al., 1994). Protection levels reached by 

hidden antigen vaccines were reported to be higher than 90% reduction in FEC’s and 

75% reduction in nematode burdens (Newton, 1995). Although high levels o f protection 

are conferred by the different vaccines there is still no commercial vaccine available.

Biological control such as nematode trapping fungi, is another approach for 

controlling GI nematodes. Several studies demonstrated that larval populations o f 

nematodes were significantly reduced in feces and pasture grazed by fungus-treated 

animals (Nansen et al., 1995; Wolstrup et al., 1994; Larsen e t al., 1998; Larsen et al., 

1994; Fernandez et al., 1999; Faedo et al., 1997; Gronvold et al., 1993). Although these 

results are promising, there are some concerns to be considered such as feasibility o f 

using the same isolates in different climatic conditions, delivery methods, and the 

negative effects that certain anthelmintics may have when used together in an integrated 

control strategy (some benzimidazoles have anti-fungal activity).

The use o f genetically resistant animals is another method for controlling

parasitic infections. The evidence for genetic variation in resistance to infection with

nematodes comes from three sources: variation within breeds, variation among breeds,

2
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and the identification o f genes contributing to the variation (Stear and Murray, 1994). 

Examples o f within breed variations include genetic variation in resistance to infection 

with H. contortus in Australian Merinos (Gray et al., 1990; Gray et al., 1992; Gray and 

Gill, 1993), and with Teladorsagia circumcincta in Scottish Blackface (Stear and 

Murray, 1994). There is substantial evidence that supports variations in susceptibility to

H. contortus infections between breeds. Breeds with high resistance to H. contortus 

include the Scottish Blackface (Abbott et al., 1985a,b; Altaif and Dargie, 1978), Red 

Massai (Preston and Allonby, 1978, 1979; Bain et al., 1993; Baker et al., 1993, 1994), 

Romanov (Gruner et al., 1986), Barbados Blackbelly, Florida Native, Saint Croix 

(Bradley et al., 1973; Yazwinski et al., 1979; 1980, Courtney et al., 1985a,b; Gamble 

and Zajac, 1992), and Gulf Coast Native (Lemarie et al., 1987; Lemarie, 1988, Miller et 

al., 1993; Miller et al., 1998; Bahirathan, 1994; Bahitaran et al., 1996).

Gulf Coast Native (GCN) is a breed o f sheep raised throughout the Gulf Coast

region which has survived without benefit of much intensive management effort such as

deworming. These sheep are extremely hardy, have excellent mother instincts, and are

considered to be parasite and foot rot resistant. The ability for them to overcome the hot

and humid conditions characteristic o f  the subtropical Gulf Coast region makes the

breed a prime candidate for production throughout the southern states. This breed was

derived form the first sheep brought to the area by Spanish and French explorers and

settlers beginning in the 1500s. Merino and Rambouillet were the first breeds

introduced whereas Southdown, Hampshire, Dorset Horn and Cheviot were introduced

more recently. Crossbreeding these breeds and natural selection played a major role in

the development o f the GCN breed. Parasite resistance is one o f  the most important

features o f  this breed and has been demonstrated by extensive epidemiological studies
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(Lemarie et al., 1987; Lemarie, 1988; Miller et al., 1993; Bahirathan, 1994; Bahitaran et 

al., 1996; Bradley et al., 1973; Amarante et al., 1999).

1.2. The Parasite, Life Cycle and Pathogenicity.

Haemonchus contortus (Rudolphi, 1803) is a nematode that is included in the 

Phylum Nematoda, Class Secementea, Subclass Rhadbitia, Order Strongylida, 

Superfamily Trichostrongyloidea, and the Family Trichostrongylidae. This nematode is 

in the abomasum o f  sheep and goats and Haemonchus placet is found in cattle and other 

ruminants (Soulsby, 1982). The life cycle is composed by a  preparasitic and a parasitic 

phase and is a direct life cycle. The adult parasites are located in the abomasum and lay 

eggs that are excreted in the feces. Under satisfactory environmental conditions 

development to infective larvae ( L 3 )  is reached in four to six days. Following ingestion 

o f L 3 ,  exsheatment occurs in the rumen and the L 3  migrate to the abomasum and 

penetrate the gastric epithelial cells from which they emerge as fourth stage larvae (L4) 

(Soulsby, 1982). The L4  mature into adults in the abomasum and feed and produce eggs. 

The prepatent period in sheep is 15-18 days.

Haemonchus contortus is one o f  the most pathogenic parasites o f sheep. The

principal feature o f  H. contortus infection is anemia. Both the adult and the L4  ingest

blood and in addition, move and leave wounds which heamorrhage into the abomasum

(Soulsby, 1982). The clinical signs o f  haemonchosis may be divided in three

syndromes: hyperacute, acute and chronic. In the hyperacute syndrome animals are

exposed to a massive infection that causes a severe anemia, dark color feces and sudden

death from acute blood loss. Acute syndrome occurs in young susceptible lambs that

become heavily infected. Anemia also develops but there is an expansion o f the

erythropoietic response o f  the bone marrow. The anemia is accompanied by
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hypoproteinaemia and edema and deaths may occur. A common sign o f  this syndrome

is a submandibular edema called ‘bottle-jaw’ (Taylor et al., 1990). Chronic

hemonchosis is due to low numbers o f  parasites and is characterized by high morbidity

and low mortality. Parasitized animals are weak, unthrifty and emaciated and anemia

may or may not be severe depending on the erythropoietic capacity o f  the animal.

1.3. Immune Response to Gastrointestinal (GI) Nematodes

Protective responses to GI nematodes involve cellular and humoral immune

responses o f  the adaptive or acquired immunity. Four main consequences o f  the

adaptive immune response against GI nematodes are recognized. First, rapid expulsion,

which is directed against infective larvae as they enter the GI tract not allowing

establishment and subsequently larvae are expelled in the feces within 24-48 hrs o f

challenge. Secondly, immune responses are directed against established developing

larvae or pre-adults that are expelled before they reach adulthood (Miller, 1984).

Thirdly, depression of fecundity characterized by decreased egg output by adult female

worms. Finally, the self-cure phenomenon as described by Stewart (1955) where

established adult worms were expelled over several days after challenging sheep with

L3 . Several studies indicate that local hypersensitivity reactions occurred in response to

the elimination o f GI nematodes (Stewart, 1955; Smith et al., 1984; Yakoob et al.,

1983). These local reactions (Type I or immediate hypersensitivity) are composed o f

two phases: the first (sensitization phase) occurs 1 - 2  days after challenge whereas the

second (effector phase) occurs between 5-10 days after challenge. In the first phase,

parasite antigen taken up by M  cells overlying Peyer’s patches or diffusing through the

gut epithelium activates antigen-specific B and T cells. T cells produce cytokines that

act on B cells inducing activation and differentiation and leading to antibody production
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(IgE). IgE binds the antigen and IgE receptors located on a  variety o f  cell types 

(eosinophils, mast cells and basophils). Once antigen-specific IgE is generated and 

bound to mast cells, subsequent parasite antigen exposure causes crosslinking o f bound 

IgE resulting in degranulation and release o f  pre-formed (histamine) and secondary 

formed mediators (leukotrienes and prostaglandins). Histamine causes dilatation and 

increased permeability o f  blood vessels whereas leukotrienes and prostaglandins induce 

contraction o f  smooth muscle. In addition there is an increased mucus secretion that 

together with muscle contraction and increased permeability results in paralysis and 

disorientation o f larvae and subsequent expulsion. Lee and Ogilvie (1982) demonstrated 

that the mucus layer acts as a barrier to establishment o f  Trichinella spiralis in immune 

rats, and does so in the presence either o f  specific antibody or a heat-sensitive 

component, presumably complement, in normal serum. Douch et al. (1984, 1986, 1996) 

showed that the presence of larval migration inhibitory compounds in the GI mucus o f 

sheep was associated with resistance to GI nematodes demonstrated that mucosal mast 

cells and globule leukocytes were the source o f these substances. The association o f 

mast cells and resistance was demonstrated by Huntley et al. (1992) when steroid 

treatment o f  immune sheep resulted in inhibition o f mastocytosis with concomitant 

reduction in the mucosal content o f sheep mast-cell proteinase, and loss o f resistance to 

larval challenge. In accordance Winter et al. (1997a) observed a lower tissue mast cell 

and eosinophil count that resulted in higher Nematodirus battus worm burdens and 

higher fecundity o f the nematodes in lambs treated with dexamethasone that in 

untreated lambs.

Eosinophils have also been implicated in the immune response to GI nematodes.

Mast cells products are chemotactic to eosinophils that are attracted to sites o f nematode

6
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invasion. Because eosinophils have Fc receptors, they can bind antibody-coated 

parasites. Once bound they degranulate and release their granule contents including 

products o f  the respiratory burst generated by eosinophil peroxidase and lytic enzymes 

such as lysophospholipase and phospholipase D. Major basic protein, the crystalline 

core o f  the specific granules, can damage the cuticle o f nematodes. Eosinophil cationic 

protein is a  ribonuclease that is lethal for nematodes. Eosinophil neurotoxin is also a 

ribonuclease that is toxic for nematode parasites causing reversible paralysis o f  larval 

stages (Miller, 1984). The release o f eosinophil-derived neurotoxin will restrict motility 

of the larvae allowing adhering eosinophils to discharge their granule content directly 

on the larval surface. Rainbird et al. (1998), observed that eosinophils obtained from 

mammary washes o f  sheep immobilized and killed H. contortus larvae in vitro in the 

presence o f  antibody, complement and IL-5. Dawkins et al. (1989) observed that lambs 

selected for resistance to Trichostrongylus colubriformis infection based on fecal egg 

counts (FEC) were capable o f mounting a marked eosinophilia. Accordingly, 

Thamsborg et al. (1999) showed that genetically resistant Merino ewes had higher 

eosinophil counts that their random-bred counterparts. Rothwell et al. (1993) 

demonstrated that there was a negative correlation between eosinophil numbers in 

tissues and blood and responsiveness to T. colubriformis infection. Eosinophils and 

mast cells were also related to nematode expulsion in N. battus infections (Winter et al., 

1997b).

Humoral immunity  has been shown to be involved with protection against GI 

nematodes. The majority o f  the antibodies directed against the different parasitic stages 

are locally produced. Gill et al. (1992, 1994) demonstrated that there was an increase o f

antibody-containing cells o f the abomasal mucosa after H. contortus challenge.
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Accordingly, Smith (1977) using a  radioimmonoassay technique to follow the anti- 

larval antibody response in the serum o f  sheep subjected to repeated dosing with H. 

contortus demostrated that IgA was derived from the abomasa! mucosa whereas IgG 

was derived from blood. Smith and Christie (1978) vaccinated lambs with irradiated H. 

contortus larvae and showed that resistance to challenge was conferred by mucosal IgA 

and IgG. In another study, Huntley et al, (1998) demonstrated an increase in IgE 

concentrations during primary and secondary challenge with T. circumcincta. The 

evaluation o f  total protein and IgE in serum compared with gastric lymph confirmed 

that IgE was produced in the regional lymph nodes. IgE B-cell proliferation in germinal 

centers o f  GI lymph nodes indicates that IgE production against GI parasites occurs 

predominantly in the gut-associated lymph node tissues (Kooyman et al., 1997; 

Mayrhofer et al., 1976).

Baker and Gershwin (1993) demonstrated that IgE levels were inversely 

correlated with numbers o f  Ostertagia ostertagi suggesting that circulating IgE levels 

declined as a result o f  mast cell binding. Charley-Poulain et al. (1984) demonstrated a 

temporal relationship between the rise in local anti-worm IgA antibodies and the fall in 

the FEC. Stear and Murray (1994) found a negative correlation o f  T. circumcincta 

burdens with concentration o f  IgA plasma cells in the abomasa! mucosa. Nematode 

length o f  adult T. circumcincta female is another feature controlled by local IgA 

response and specific IgA against L4  is the major component (Stear et al., 1999). 

Kooyman et al. (1997) found a  negative correlation between H. contortus burden and 

serum total IgE levels, and suggested that Ig E is involved in anti-Haemonchus immune 

mechanisms. In addition to IgA and IgE isotypes, IgGl and IgM have also been implied

in the immune response to nematodes in sheep (Bisset et al., 1996).

8
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Cellular immunity is another important feature o f the immune response to GI 

nematode infections. Several approaches have been used to analyze the role o f T 

lymphocytes in laboratory animals. Studies that used neonatally thymectomized or 

athymic animals showed that GI nematodiasis was prolonged in these animals 

indicating that T lymphocytes are centrally involved in the acquired immune response 

against infection (Wakelin, 1978; Mitchel, 1979). Another approach for defining the 

role o f lymphocytes in protection against nematodes includes adoptive transfer o f 

protection with immune cells harvested from donors at various stages o f  infection. 

Grencis and Walkelin (1982) observed that lymphoblasts were more effective than 

resting lymphocytes in transferring immunity to T. spiralis in mice. Accordingly, Smith 

et al. (1984) demonstrated that the transfer o f lymphoblasts caused a marked reduction 

in the worm burden o f  the recipient sheep. They suggested that some o f the 

lymphoblasts and IgA containing cells transferred from the donor, selectively migrated 

to the gut o f the recipient where, after maturation and proliferation, those present in the 

abomasal mucosa synthesized large amounts o f IgA some o f which discharged into the 

gastric lymph. Adoptive transfer o f lymphocytes and/or bone marrow cells to an x- 

irradiated host has also been used to study the importance o f T lymphocytes in the 

response to nematode infections. Ogilvie et al. (1977) showed that T lymphocyte- 

enriched populations o f  immune thoracic duct lymph were capable o f expelling 

damaged worms from lethally irradiated rats. Different approaches were used in 

ruminants to define the role o f  T lymphocyte in the immune response to GI nematodes. 

Haig et al. (1989), using cell proliferation assays, observed that T lymphocyte lines 

consisting o f greater than 90% T helper lymphocytes were generated from the

peripheral blood mononuclear cells o f sheep following primary and challenge H.

9
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contortus infections. Furthermore, the proliferation o f  cell lines tested was restricted by 

MHC Class II but not MCH Class I molecules, further evidence that the lines were 

helper T lymphocytes. CD4+ T helper lymphocytes can be subdivided into subsets 

(Thl and Th2) according to the profile o f  cytokines produced. The T hl subset, 

characterized by interferon-y and IL-2 production, is involved in monocyte/macrophage 

mediated immune responses and is associated with cellular immunity to intracellular 

parasites. The Th2 subset produces IL-4, IL-5 and IL-10 and is involved in antibody 

production (including IgE) mast cell and eosinophil proliferation and function, and is 

associated with humoral immune responses to nematode parasites (Finkelman and 

Urban, 1992). One particular cytokine (IL-4) is responsible for causing the iso type 

switch from IgM to IgE. The study o f sequential responses in the abomasal mucosa with 

the use o f biopsy has also proved that T lymphocytes are involved in the immune 

response to GI nematodes. Using immunochemistry stained with monoclonal antibodies 

for CD4+ and CD 8 +, Pfeffer et al. (1996) showed that there was an increase o f  CD4+ 

and CD8 + T lymphocyte populations in the abomasal mucosa following infection with 

T. colubriformis. Mouse monoclonal antibodies have also been successfully used in 

studies where lambs depleted of their CD4+ T lymphocyte were rendered highly 

susceptible to H. contortus infections (Gill et al., 1993). In this study, lines o f  Merino 

sheep selected for resistance reverted to susceptibility when they were treated with 

monoclonal antibodies to deplete CD4 cells. Whether the same effect will occur in a 

naturally selected breed such as Gulf Coast Native remains to be determined.

Evidence previously presented indicates that the immune response to GI 

nematodes is an association o f cellular and humoral immunity with local immunity.
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Whether this is the mechanism responsible for the higher resistance o f  GCN sheep to H. 

contortus is yet to be elucidated.

1.4. Research Objectives

The mam purpose o f  this research was to define components o f the immune 

response that may be involved in resistance o f GCN sheep to H. contortus infection.

1.5. Hypothesis Testing

1. Corticosteroid treatment o f neonatal GCN lambs will render them 

susceptible to H. contortus infection.

2. Corticosteroid treatment o f post-weaned GCN lambs that have been 

previously exposed to H. contortus infection will suppress acquired 

immunity that will result in increased susceptibility to further challenge.

3. Treatment with mouse anti-CD4 monoclonal antibodies will deplete CD4 T 

lymphocyte in GCN lambs and will result in higher susceptibility to H  

contortus infection.
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CHAPTER 2

PILOT STUDY: DOSE TITRATION OF DEXAMETHASONE

2.1. Introduction

Dexamethasone is a synthetic glucocorticosteroid used as an anti-inflammatory 

or immunosuppressive agent. Glucocorticosteroids are naturally occurring hormones 

that prevent or suppress inflammation and immune responses when administered at 

pharmacological doses. At the molecular IeveL, glucocorticosteroids bind with high 

affinity to specific cytoplasmic receptors. The hormone-receptor complex is then 

transported to the nucleus, where it binds to DNA sequences alters gene expression. 

This binding results in an inhibition o f  leukocyte infiltration at the site o f inflammation, 

interference in the function o f mediators o f  inflammatory response, and suppression of 

immune responses. Steroids contribute to the maintenance o f  normal circulation and cell 

membrane stability. The steroids act by stimulating the formation o f lipocortin in 

damaged cells that suppresses the release o f  the enzyme phospolipase A 2 which in turn 

cleaves phospholipids in cell membranes to release arachidonic acid. Arachidonic acid 

is a substrate for cyclo-oxygenase and lypoxygenase that are precursors of 

prostaglandins and Ieukotrienes, respectively. Prostaglandin E is found in high 

concentrations in inflammatory exudates, it acts as a vasodilator, increases capillary 

permeability, and sensitizes local pain receptors. Thromboxane causes platelet 

aggregation and vasoconstriction, and PGI2  causes vasodilation and inhibition o f  platelet 

aggregation, the thromboxane-PGL interaction is a balance system to maintain 

circulatory stability and homeostasis. Leukotrienes act as major chemotactic agents 

attracting polymorphs to the site o f  inflammation. Biological actions include increased 

leukocyte adhesion, chemotaxis, and degranulation, increased vascular permeability,
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bronchoconstriction and vasoconstriction (Barragry, 1994). The suppressive effect o f 

the glucocorticoids on the release o f  arachinonic acid will result in minimization and 

abolition o f  local inflammatory processes and inhibition o f  chemotaxis.

Glucocorticoids suppress both the number o f cells and the actions o f  the 

immune system. Cell-mediated immunity is more affected by suppressive effects o f  the 

glucocorticoids than humoral immunity. Antibody production is inhibited at higher 

dosages and longer-term therapy with glucocorticoids than it is used to suppress cellular 

immunity. The capacity o f  the lymphocytes to process antigens is diminished, and 

activation o f  lymphocytes previously sensitized to an antigen is inhibited (Barragry, 

1994). Glucocorticoids inhibit virus-induced interferon synthesis and diminish the 

functional capacity o f  monocytes, macrophages, and eosinophils through inhibition o f  

the formation o f  interleukines such as IL-1 (macrophages), EL-2 (lymphocytes), EL-3, 

and IL - 6  and other chemotactic factors (Ferguson and Hoenig, 1995). Studies have 

suggested that corticosteroids may inhibit T-lymphocyte proliferation, T-lymphocyte 

dependent immunity, and the expression o f genes encoding cytokines (IL-1, IL-2, IL-6 , 

IFN-a, and TNF-a) (Knudsen et al., 1987; Zanker et al., 1990; Araya et al., 1984; 

Vacca et al., 1992). It has been shown that many genes encoding cytokines have a 

glucocorticoid response element in the 5' regulatory sequence that is a target for the 

complex formed by the association o f  the corticosteroid with its intracellular receptor 

protein. The binding o f  the complex to the glucocorticoid response element blocks the 

transcription o f  the IL-2 gene (Vacca et al., 1992). It has also been shown that 

dexamethasone suppressed EL-13 gene expression by PBMCs in a dose-dependent 

manner (Fushimi et al., 1998).
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Hamid and Aldeen (1992) showed that dexamethasone treatment in sheep, 

resulted in a significant increase in neutrophils and decrease in lymphocyte, together 

with a net increase in the total leukocyte count. According to Panaretto and Wallace 

(1978), the increase in the neutrophils is a  result o f  stimulation o f  their release from the 

bone marrow and inhibition o f their migration outside the capillaries. On the contrary, 

the reduction in lymphocytes is a consequence o f  the redistribution o f  these cells 

outside the circulatory system and concentration in the lymph nodes and bone marrow 

(Cohen, 1972). They also showed that there was a significant reduction in the 

eosinophil numbers, significant increase in the monocyte numbers, and a non­

significant reduction in the number o f basophils.

The purpose o f  this study was to determine the effective dose o f  dexamethasone 

capable o f  suppressing the immune response in Gulf Coast Native sheep.

2.2. Materials and Methods

2.2.1. Animals

Six yearling Gulf Coast Native (GCN) ewes were removed from pasture and 

dewormed to remove existing nematode infection. All animals were kept in dirt floor 

pens at the Central Station Sheep Farm, Louisiana Agricultural Experimental Station, 

Baton Rouge, LA. They were fed a maintenance ration and water was available at all 

times. The ewes were randomly allocated to three treatment groups (2 ewes per group). 

The ewes were treated with dexamethasone (Azium ® 2 mg/ml, injectable IM) three 

times a week receiving 0.5 mg/kg (Group 1), 1 m/kg (Group 2), and 2 mg/kg (Group 3) 

for a ten week period.
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2.2.2. Hematology

Peripheral blood was collected weekly for white blood cell (WBC) and leukocyte 

differential determinations. WBC was obtained by an automated hematology analyzer 

with Cap Piercer (INC. Baker System 9110 + Plus). Differential leukocyte counts were 

made on cover glass smears stained with modified Wright’s stain.

2.2.3. Lymphoproliferation Assays

Lymphoproliferation assays were run on peripheral blood mononuclear cells at 

weeks 3 and 7. Lymphocytes were isolated from whole blood using Ficoll-Plaque. After 

3 washes with PBS, 1 ml o f  RPMI-1640 (see Appendix) was added, and cell 

concentration was determined with a haemocytometer using Trypan Blue to obtain a 

final suspension o f 2x106  cells/ml. Phytohemagglutinin (PHA), Concanavalin A 

(ConA), and Pokeweed (PW) were used to test T lymphocyte function. ConA and PW 

were used at 4, 2 and 1 pg/ml and PHA was used at 8 , 4 and 2 pg/ml. Mitogens were 

diluted in RPMI-1640 and added to respective wells in 100 pi volumes. RPMI-1640 

was added to the control wells, and then 1 0 0  pi o f  the cell suspension was added to the 

plates. All cultures were done in triplicate. The plates were incubated at 39°C in a 

humidified incubator with 5% CO2 for 3 days. The plates were then pulsed with 0.5 pCi 

[3 H] thymidine/well for 4 hours and then harvested for liquid scintillation counting.

2.2.4. Enzyme-linked Immunosorbent Assay (ELISA) for Antibodies to Haemonchus 
contortus Whole Worm Antigen (WWA)

The ELISA test used was a modification o f the procedure described by Smith et

al. (1999). Microtitre plates were coated with 50 pi of WWA obtained from mature H.

contortus worms. The antigen was diluted in carbonate (pH 9.6) coating buffer to 10

pg/ml. The plates were incubated at room temperature overnight and then washed with

PBS containing 0.05% Tween-20 (washing buffer). Serum samples diluted 1/500 in
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serum diluent were added to the plates and then incubated for 2  hrs at room 

temperature. Serum from a mature ewe with a  high infection level was used as a 

positive control and was also diluted to 1/500 dilution in serum diluent and incubated 

for 2 hrs at room temperature. All serum samples (test and positive control) were done 

in triplicate. After another wash, 50 pi o f  rabbit anti-sheep IgG alkaline phosphatase 

conjugate (Kirkegaad and Perry, MD, U.S.A) diluted to 1:1000 in blocking buffer was 

added and incubated for 2 hrs incubation. The plates were then washed and dried, and 

75 pi o f  pNPP substrate (Kirkegaad and Perry, MD, U.S.A.) was added. The plates 

were then incubated in the dark for one hour and the color reaction was stopped with 75 

pi o f 5% EDTA. The plates were read at 405 nm with an automatic ELISA plate reader.

2.3. Results

2.3.1. WBC Differential

Mean lymphocyte count decreased from week 6  to the end o f the study in the 

three groups (Table 2.1). At week 10 the mean lymphocyte in the three groups was 

lower than the mean at week 0  and these means were lower than what is reported as 

being the normal (5000) in sheep (Jain, 1986). Mean eosinophil count showed a marked 

decrease from week 5 to the end o f the study. At week 10 mean eosinophil count of the 

three groups was lower than what is reported as being the normal (400) and lower than 

the mean at week 0. Mean neutrophil count increased from week 4 and remained higher 

than what is reported as being the normal (2400) to the end o f  the study in the three 

groups.

2.3.2. Lymphoproliferation Assays

Lymphoproliferation assays were run on weeks 3 and 7 o f dexamethasone 

treatment. The results o f  ConA stimulation are presented in Table 2.2.
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There was a decrease in mean count per minute (CPM) in response to ConA

stimulation from week 3 to week 7 in all the groups except for group 1 (1 pg/ml) and the

responses were relatively equal for groups 2 and 3 at all ConA concentrations.

Table 2.1.Weekly mean white blood differential counts for ewes given 0.5 mg/kg 
(Group 1, n=2 ), 1.0 mg/kg (Group 2, n=2), and 2.0 mg/kg (group 3, n=2) 
dexamethasone.

Weeks o f  treatment

roup Dose Type* 0 1 2 3 4 5 6 7 8 9 10 Mean

1 0.5 L 2945 2542 4808 2996 2976 2211 2383 4637 2769 4345 2595 3201

2 1.0 L 4072 2134 3211 4227 3436 3549 2379 3972 2797 2610 2707 3190

3 2.0 L 6151 3107 2546 4131 4060 4171 3088 2404 3858 2942 2655 3556

1 0.5 E 366 407 582 180 205 72 0 251 281 0 74 220

2 1.0 E 1508 1132 243 230 515 186 24 358 28 131 287 422

3 2.0 E 704 339 128 146 445 108 37 150 22 0 45 93

1 0.5 N 1726 5469 3786 1533 8744 3526 2942 2655 2868 3707 2827 3617

2 1.0 N 1844 1969 5060 1376 5324 2640 2632 4279 2100 2076 2480 2889

3 2.0 N 2307 4478 3269 2640 4297 3857 2270 3101 2678 3044 3459 3218

1 0.5 M 110 60 195 135 162 147 111 216 169 235 131 152

2 1.0 M 199 94 35 209 128 160 51 179 127 51 236 134

3 2.0 M 92 33 94 227 170 364 76 89 205 124 86 142

1 0.5 B 76 143 391 77 205 147 89 216 145 235 134 169

2 1.0 B 77 86 35 112 160 202 76 155 155 178 145 126

3 2.0 B 94 0 95 146 144 263 169 85 68 95 86 113

1 0.5 T 5223 8650 9762 4884 12209 6104 5525 7917 6276 8523 5663 7339

2 1.0 T 7699 5415 8634 5893 9659 6738 5163 8942 5180 5045 5856 6748

3 2.0 T 9348 8003 6131 7290 9169 8763 5639 5802 6831 6204 6355 7230

1 L: lymphocytes, E: eosinophils, N: neutrophils, M: monocytes, B: basophils, T: total white 
blood count.

Lymphoproliferation in response to stimulation with PHA at 8 , 4, and 2 pg/ml, 

is presented in Table 2.3.
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There is a decrease in mean CPM in response to PHA stimulation from week 3 

to week 7 for the three groups across doses and the 1.0 mg/kg dose appeared to have the 

greatest effect.

Lymphoproliferation in response to stimulation with PW at 4, 2, and 1 pg/ml, is 

presented in Table 2.4. Groups 2 and 3 only showed a decrease in mean CPM in 

response to PW stimulation from week 3 to week 7 and the responses were relatively 

equal at all P W concentrations.

2.3.3. ELISA for H. contortus WWA

ELISA tests were determined on weeks 2, 5 and 10 o f  the study. The results 

expressed as percent optical density (OD) are shown in Table 2.5. The three groups 

showed a decrease in antibody production to H. contortus WWA and group 2 showed 

the greatest decrease.

Table 2.2. Mean lymphocyte proliferation (counts per minute) in response to 
Concavalin A stimulation for ewes given 0.5 mg/kg (Group 1, n=2), 1.0 mg/kg (Group 
2, n=2) and 2.0 (Group 3, n=2) dexamethasone on weeks 3 and 7 o f  treatment.

Group Dose-
Media ConA (4 pg/ml) ConA (2 pg/ml) ConA (1 pg/ml)

Week 3 Week 7 Week 3 Week 7 Week 3 Week 7 Week 3 Week 7

1 0.5 196 256 52091 28764 43785 32748 29194 35846

2 1 . 0 320 365 48585 8359 55528 19488 45551 20790

3 2 . 0 1015 102 54230 2347 57959 24797 43714 31905

Table 2.3. Mean lymphocyte proliferation (counts per minute) in response to 
Phytohemagglutinin stimulation for ewes given 0.5 mg/kg (Group 1, n=2), 1.0 mg/kg 
(Group 2, n=2) and 2.0 (Group 3, n=2) dexamethasone on weeks 3 and 7 o f treatment.

Group Dose
Media PHA ( 8  pg/ml) PHA (4 pg/ml) PHA ( 2 pg/ml)

Week3 Week 7 Week 3 Week 7 Week 3 Week 7 Week 3 Week 7

1 0.5 148 346 40818 20703 44085 30677 28062 24147

2 1 . 0 349 261 44940 10336 47761 11779 43896 8379

3 2 . 0 1121 243 42602 30063 44968 27682 44345 27800
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Table 2.4. Mean lymphocyte proliferation (counts per minute) in response to Pokeweed 
stimulation for ewes given 0.5 mg/kg (Group 1, n=2), 1.0 mg/kg (Group 2, n=2) and 2.0 
(Group 3, n=2) dexamethasone on weeks 3 and 7 o f  treatment.

Group Dose
Media PW (4 pg/ml) PW (2 pg/ml) PW (1 pg/ml)

Week 3 Week 7 Week3 Week 7 Week 3 Week 7 Week 3 Week 7

1 0.5 130 360 41781 39108 44614 41323 33779 41516

2 1 . 0 320 376 37739 21614 42526 18463 40523 18143

3 2 . 0 779 113 52037 19986 52480 18876 51200 16216

Table 2.5. Total antibodies to H. contortus whole worm antigen expressed as mean 
percent OD for ewes (n=2 per group) given 3 dose levels o f  dexamethasone.

Weeks o f  treatment

Group Dose N 2 5 1 0 Mean

1 0.5 2 27.7 13.8 7.2 16.2

2 1 . 0 2 19.4 6 . 8 2.7 9.6

3 2 . 0 2 23.8 14 3 13.6

2.4. Discussion

Dexamethasone is a synthetic glucocorticosteroid used as an antinflammatory 

and immunesupressive agent. It is one o f  the longest acting corticosteroids used in 

clinical medicine. The effect o f  dexamethasone on the leukogram is mainly 

lymphopenia and eosinopenia due to cell redistribution and lysis, and increase in 

neutrophil counts due to the stimulation o f  their release from the bone marrow and 

inhibition o f their migration outside the capillaries as well (Panaretto and Wallace, 

1978). Hamid and Aldeen (1992) demonstrated that dexamethasone treatment resulted 

in an increase in neutrophils and decrease in lymphocytes. Similar results were 

observed in this study as all the treatment groups showed a decrease in lymphocytes and 

eosinophils counts and an increase in neutrophils counts. Basophils and monocytes 

counts remained unchanged. The hematology parameters led us to conclude that
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dexamethasone given, at lmg/kg (EM) effectively reduced the numbers o f  lymphocytes 

in peripheral blood o f sheep.

Lymphocyte proliferation assays are used as indicators o f  T lymphocyte activity. 

A number o f  agents can be employed to induce T lymphocyte proliferation. Lectins 

such as PHA, ConA, and PW  are carbohydrate-binding proteins derived from plants and 

bacteria that activate T lymphocytes by indirectly cross-linking the T-cell receptor and 

are known as mitogens (Roitt et al., 1998). Pruett et al. (1987) observed that 

dexamethasone suppressed both cellular and humoral aspects o f  the bovine immune 

response. They concluded that the immunesuppressive effect o f  dexamethasone depends 

on the dose o f dexamethasone administered, the pharmacological level o f 

dexamethasone in vivo, physiological adaptation o f the host, mitogen dose used in 

evaluation, and time o f  evaluation post drug administration. In this study, 

dexamethasone treatment affected T lymphocyte functionality as was shown by low 

CPM across all mitogens and doses from about weeks 5-6 to the end o f  the study. 

Although all three doses o f  dexamethasone decreased the CPM with all mitogens tested, 

1 mg/kg was more effective than 0.5 mg/kg and was as effective as 2 mg/kg. We 

concluded from these results that lmg/kg was effective in decreasing T  lymphocyte 

functionality.

Antibody production is another aspect o f  the immune response that can be 

affected by dexamethasone treatment. Pruett et al. (1987) demonstrated a  decrease in 

the antibody production to KLH in dexamethasone treated steers. In this study, antibody 

production to H. contortus WWA declined throughout the study. Even though all 

dexamethasone doses reduced antibody production, the greater effect was seen with 1  

and 2 mg/kg and both were better than 0.5 mg/kg.
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We can conclude from the results o f this study that dexamethasone is an

effective immunesuppressive agent, and that 1  mg/kg was appropriate as a  minimal 

dose that adequately suppressed factors involved in the immune response in GCN 

sheep.
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CHAPTER 3

EFFECT OF CORTICOSTEROID EMMUNESUPPRESSION OF GULF
COAST NATIVE NEONATAL LAMBS ON RESISTANCE TO 

HAEM ONCHUS CONTORTUS INFECTION

3.1. Introduction

Epidemiological studies have shown that Gulf Coast Native (GCN) sheep 

are more resistant to  gastrointestinal (GI) nematode infection (especially H  

contortus) than Suffolk sheep (Bahirathan et al., 1996; Miller et al., 1998).

Several studies demonstrated that resistance to GI nematode infection is 

related to a local inflammatory reaction involving different cells, antibodies, GI 

mucus, and inflammatory mediators. This local response, known as immune 

exclusion, in which incoming larvae fail to establish has been documented in sheep 

against H. contortus infection (Jackson et al., 1988; Miller et al., 1983; Miller et al., 

1985). Immune exclusion can be affected by corticosteroid treatment as several 

studies have demonstrated (Jackson et al., 1988; Miller et al., 1983; Adams, 1982, 

Mattews et al., 1979; Huntley et al., 1992). Mast cells and globule leukocytes are 

the cell types involved in immune exclusion o f GI nematode infection (Presson et 

al., 1988; Miller et a l., 1985; Huntley et al., 1992; Douch et al., 1986, 1996; Miller, 

1984). Studies o f repeated infection over prolonged periods with nematode larvae 

have consistently shown that there is a massive infiltration o f the mucosa with mast 

cells and globule leukocytes (reviewed in Miller, 1984). Presson et al. (1988) 

observed that resistance to H. contortus in a resistant genotype of Merino sheep was 

abrogated by treatment with corticosteroids. It was demonstrated that the loss o f 

resistance was associated with a decline in mast cell and globule leukocyte density
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and decline in concentrations o f  sheep mast-cell proteinase (SMCP) in abomasal 

mucosal tissues.

Self-cure is another important mechanism involved in resistance to GI 

nematode infection. This phenomenon, described by Stewart (1955) is characterized 

by the expulsion o f  established adult nematodes after challenging sheep with larvae. 

It was also demonstrated that hypersensitivity reactions were involved in the 

expulsion o f  the established nematodes and this was evidenced by a transient rise in 

blood-histamine, the development o f  skin reactivity to an antigen prepared from 

larvae and the development o f  edema in the GI tract. Charley-Poulain (1984) 

demonstrated that local IgA was involved in inducing self-cure o f  H. contortus and 

indicated that the rise in IgA was highest when tested against L3 and L4  antigens. 

Duncan et al. (1978) vaccinated sheep with irradiated H. contortus larvae and 

demonstrated that protection against challenge was associated with the production 

o f abomasal mucus IgA and serum IgG antibodies. Accordingly, Gill et al. (1992, 

1994) demonstrated that there was an increase o f  antibody-containing cells o f  the 

abomasal mucosa after H. contortus challenge. Stear et al. (1999) indicated that 

there was a negative correlation o f  Teladorsagia circumcinta burdens and o f 

nematode length and specific IgA levels. In another study, (Baker and Gershwin, 

1993) showed that serum IgE levels were inversely correlated with numbers o f 

Ostertagia ostertagi in calves.

T lymphocytes are also involved in the local inflammatory response to GI 

nematode infection. In a secondary nematode challenge, helper T lymphocytes that 

were sensitized after a first exposure are directed to the GI mucosa and produce 

cytokines that will act on another cells such as B lymphocytes to produce antibodies
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and mast cells and eosinophils to release preformed and secondary formed 

mediators. The role o f  these helper T lymphocytes have been demonstrated in 

studies where sheep were became highly susceptible to H. contortus challenge after 

being depleted of these (Gill et al., 1993; Karanu et al., 1997).

The mechanisms involved in the resistance to Gulf Coast Native sheep have 

not being characterized yet. Whether local immune responses involving mast cells, 

globule leukocytes, antibody production and helper T lymphocytes are also 

important in the natural resistance to H. contortus infection in GCN sheep remain to 

be elucidated. The purpose o f  this study was to suppress the immune response 

(including cellular and humoral immunity) o f  GCN neonatal lambs with 

dexamethasone and assess the effect o f the immunesuppression on their natural 

resistance to H. contortus infection.

3.2. Materials and Methods

3.2.1. Animals

At four weeks o f  age, eight (GCN) neonatal lambs were randomly allocated into 

either a treatment or a control group (four Iambs each). Lambs in the treatment 

group were treated with dexamethasone (Azium ® 2 mg/ml, injectable IM) at 1 

mg/kg o f  body weight three times a week for a period o f 9 weeks. Four Suffolk 

neonatal lambs (susceptible breed) were maintained with and monitored similar to 

the GCN lambs throughout the study. The lambs were maintained on ryegrass 

pasture with their dams during the study. All lambs were bled and fecal sampled on 

a weekly basis and the GCN lambs were necropsied at the end of the study.
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3.2.2. Fecal Egg Counts (FEC)

Individual fecal samples were collected from the rectum and 2 grams were 

processed to determine FEC using the modified McMaster technique and reported 

as eggs per gram (EPG) (Whitlock, 1948) (see appendix).

3.2.3. Necropsy

At the end o f  the study, GCN lambs were euthanized (Beuthanasia®-D, 1 

ml/101b o f body weight) and necropsied to recover the GI tract for nematode 

recovery, enumeration and identification. Abomasal lymph nodes were also taken to 

collect lymphocytes for lymphoproliferation assay. As soon as the abdominal cavity 

was exposed the abomasal lymph nodes were taken aseptically and immersed in 

PBS. The abomasum was isolated from the rest o f  the GI tract and opened 

throughout the greater curvature and contents were emptied into a 10 liter tub. The 

abomasal mucosa was thoroughly rinsed and the abomasum was then transferred to 

another 10 liter tub and left to soak overnight in warm water. Water was added to 

the abomasal contents to bring the volume to 5 liters. The contents were thoroughly 

stirred and a 500 ml aliquot was transferred to a  labeled plastic bottle. The small 

intestine was open on its entire length and the contents were emptied into a 1 0  liter 

tub. Water was added to bring the volume to 5 liters in which the SI was thoroughly 

rinsed and then discarded. The contents were thoroughly mixed and a 500 ml aliquot 

was transferred to a  labeled plastic bottle. The large intestine was stripped along the 

caecum and proximal colon and the contents were emptied into a 10 liter tub. A 500 

ml aliquot was collected following the same procedure described for the SI. The 

bottles were left to settle for 1  hour and 1 0 0  ml was poured off and 1 0 0  ml o f

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

and discarded and water was added to bring the volume to 5 liters and a 500 ml 

aliquot was transferred to a  labeled plastic bottle.

3.2.4. Nematode Enumeration and Identification

After inverting the bottle several times to thoroughly mix contents, 100 ml 

was poured off into a  200 mesh sieve and was washed. Contents were then washed 

into a beaker and iodine was added. Small amounts were poured in a petri dish and 

scanned using a dissecting scope. Nematodes were transferred to a slide in a drop o f 

Iactophenol and were then identified to species under a  microscope. The total 

nematode burden in each GI compartment was obtained by multiplying the number 

o f  nematodes found in 100 ml by 50.

3.2.5. Peripheral blood tests

3.2.5.1. Hematology

Peripheral blood was collected in 7 ml EDTA vaccutainer tubes via jugular 

venipuncture. White blood cell leukocyte differential (WBC), and pack cell volumes 

(PCV) were determined on a weekly basis with the same procedures detailed in 

Chapter 2.

3.2.5.2. Lymphoproliferation Assays

Lymphoproliferation assays were run on peripheral blood mononuclear cells 

(PBMC) at weeks —1, 6  and 9 following the same procedures described in Chapter 

2. A final concentration o f  2x106 cells/ml was used and T lymphocyte proliferation 

was measured by thymidine incorporation (see Materials and Methods, Chapter 2).

3.2.5.3. Enzyme-linked Immunosorbent Assay (ELISA) for Antibodies to H.
contortus Whole Worm Antigen (WWA).

ELISA tests were run with the same procedure described in Chapter 2. The 

antigen used to coat the microtitre plates was H. contortus WWA diluted in
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carbonate coating buffer to give 10 pg/ml solution (pH 9.6). Serum test samples 

were diluted to 1/500 in serum diluent. Serum from a mature ewe with a  high 

infection level was used as a positive control and was also diluted to 1/500 dilution 

in serum diluent. The conjugate used was also rabbit anti-sheep IgG alkaline 

phosphatase conjugate (Kirkegaad and Perry, MD, U.S.A) diluted to 1:1000 in 

blocking buffer. And finally pNPP (Kirkegaad and Perry, MD, U.S.A.) was used as 

the substrate. The plates were read at 405 nm with an automatic ELISA plate reader.

3.2.6. Lymph Node Lymphoproliferation Assays

Abomasal lymph nodes were transferred to plastic petri dishes, cut and

mashed through a strainer. The strainer was then rinsed into another petri dish with 

PBS to wash out the cells and the remained liquid was transferred to a 15 ml 

centrifuge tube. The cell suspension was brought to 14 ml with PBS and centrifuged 

for 30 min at 1800 rpm. The supernatant was discarded and the sediment was 

resuspended in PBS and centrifuged again for 10 min at 800 rpm. After two more 

washes with PBS and subsequent centrifugations, the sediment was resuspended 

with 1ml o f RPMI-1640 media and cells were counted in a hematocytometer using 

trypan blue. The plates were set up and incubated using the same procedure 

described in Chapter 2 for lymphoproliferation assays on peripheral blood but only 

for PHA and ConA mitogens.

3.2.7. Brucellosis Card Test

At week 9, all GCN lambs were vaccinated with a killed Brucella abortus 

strain 19 (1 mg in 1 ml o f  saline solution per animal) vaccine. Serum samples were
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on the day o f  vaccination and 10 days after vaccination with the Brucello-sis card 

test (Brewer Diagnostic Kit) that is an antigen-antibody agglutination test.

3.2.8. Statistical Analysis

Statistical analysis was done with raw data except for FEC and total 

nematode counts which were log transformed to stabilize variance. The means of 

the groups were compared using PROC MIXED and PROC GLM for repeated 

measures in SAS. Tukey test was used to compare differences in nematode count 

between groups. Differences were considered statistically significant when p<0.05.

3.3. Results

3.3.1. Fecal Egg Count (FEC)

The overall mean FEC was 6365 EPG, 3110 EPG, and 10977 EPG for 

Suffolk, Control and Treated groups, respectively (Figure 3.1). The mean FEC of 

the T group was significantly higher than the mean o f  the C group from week 6  to 

the end o f  the study.

3.3.2. Total Nematode Counts at Necropsy

At necropsy, H. contortus was the predominant nematode recovered (Table 

3.1). The mean number o f H. contortus in T lambs was significantly higher than C 

lambs.

Table 3.1. Mean nematode burden in abomasum, small intestine, and large intestine 
o f dexamethasone treated (T) and untreated (C) Gulf Coast Native neonatal lambs.

Abomasum Small Intestine Large Intestine

N Haemonchus
contortus

Trichostrongylus „
Spp  Cooperia spp. Oesophagostomum

spp. Total

C 4 238a 38a 0 a 25 301 a

T 4 2325b 225b 125b 0 2675 b
Means with unlike superscript are significantly different (p<0.05).
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C(n=4) 
T(n=4) 
S(n=4)

Figure 3.1. Weekly mean fecal egg count comparing dexamethasone treated (T) 
Gulf Coast Native (GCN) neonatal lambs with untreated (C) Gulf Coast Native and 
Suffolk (S) neonatal lambs. *  Significant differences (p<0.05). * At week 0, lambs were 4 
weeks o f  age. (T) Suffolk Iambs were dewormed.

3.3.3. Peripheral Blood Tests

3.3.3.1. Blood Packed Cell Volume

The mean PCV of the dexamethasone treated GCN group was similar to that 

o f the untreated Suffolk group and both groups were significantly lower than the 

mean o f the untreated GCN group from week 6  to the end of the study (Figure 3.2).

3.3.3.2. White Blood Cell Differential

Mean lymphocyte count in the treated group was significantly lower than

that o f the control group form week 7 to the end o f the study, however the lower

ytrend was present from week 3 (Table 3.2). The overall mean lymphocyte was also
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significantly lower in the treated lambs compared to that o f the control lambs. There 

was no significant difference in mean neutrophil count between treatment groups 

but there was a trend o f higher counts in Dexamethsone treated lambs from week 6  

to the end. Mean eosinophil count was consistently higher in the treatment group but 

this difference was not significant, and no differences in mean basophil or monocyte 

counts were seen between groups.
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Figure 3.2. Weekly mean blood packed cell volume for dexamethasone treated (T) 
Gulf Coast Native neonatal lambs compared to untreated (C) Gulf Coast Native and 
Suffolk (S) neonatal lambs. Significant differences (p<0.05). *At 0 week, Iambs were 4 
weeks o f age.
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3.3.3.3. Lymphoproliferation Assays

Lymphoproliferation assays on PBMC were done on weeks -1 , 6 , and 9 of 

dexamethasone treatment.

ConA was used at 4, 2, and 1 pg/ml and the results expressed as count per 

minute (CPM) are presented in Table 3.3.

PHA was used at 8 , 4 and 2 pg/ml and the results expressed as CPM are 

presented in Table 3.4.

Lymphoproliferation in response to stimulation with PW at 4, 2, and 1 pg/ml 

is presented in Table 3.5.

Dexamethasone treatment did not affect T lymphocyte functionality as 

evidenced by the lymphoproliferation results.

Table 3.2. Weekly mean white blood differential counts for dexamethasone treated 
(T, n=4) Gulf Coast Native neonatal lambs compared to untreated (C, n=4) Gulf 
Coast Native neonatal lambs.

Type of cell

Lymphocyte Eosinophil Neutrophil Monocyte Basophil Total

Week C T C T C T C T C T C T

0 2768 2527 150 910 2166 1377 175 197 160 71 5391 4760

1 3140 2744 465 258 3461 2658 249 205 197 85 7513 5908

2 3614 3806 225 798 3369 3245 257 267 178 196 7574 8074

3 4311 2528 118 487 3592 3076 250 207 86 140 8243 6437

4 3944 2575 158 562 2096 3027 129 175 101 151 6425 6449

5 3400 2842 95 187 2545 2245 157 158 75 74 6272 5493

6 4449 2362 38 99 1638 1940 180 135 68 135 6330 4646

7 5392“ 2700 b 82 149 2622 3411 277 356 77 106 8450 6850

8 6164 a 2293 b 69 63 2702 4702 518 400 24 18 9475 7475

9 5612* 2836 b 105 502 2158 2608 316 280 160 109 8350 6700

Mean 4279* 2721 b 150 401 2628 2829 251 238 113 109 7515 6154
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Table 3.3. Mean lymphocyte proliferation (counts per minute) in response to 
Concavalin A stimulation for dexamethasone treated Gulf Coast Native neonatal 
Iambs compared to untreated Gulf Coast Native neonatal lambs on weeks —1, 6 , and 
9 o f  dexamethasone treatment.

Media ConA (4 |ig/ml) ConA (2 ng/ml) ConA (I pg/ml)

Weeks o f treatment Weeks o f  treatment Weeks o f treatment Weeks o f treatment

Treat. N -I 6 9 - 1 6  9 - 1 6  9 - 1 6  9

None 4  

Dexa 4
153

2400

1363

174

519

837

12557 46637 29540 

41675 40224 36033

19954 48018 39631 

44608 39058 41880

18458 56502 35299 

39263 38047 40212

Table 3.4. Mean lymphocyte proliferation (counts per minute) in response to 
Phytohemagglutinin stimulation for dexamethasone treated Gulf Coast Native 
neonatal lambs compared to untreated Gulf Coast Native neonatal lambs, on weeks 
—1, 6 , and 9 o f dexamethasone treatment. ___  ________________________

Media PHA (8 pg/ml) PHA (4 pig/ml) PHA (2 fig/ml)

Weeks o f treatment Weeks o f treatment Weeks o f treatment Weeks of treatment

Treat. N -1 6 9 - 1 6  9 - 1 6  9 - 1 6  9

None 4 153 373 519 
Dexa 4 2399 173 837

17618 40366 47622 
34585 26558 62551

15320 33476 35113 
37894 29297 41618

12636 31795 28332 
36614 29059 31904

Table 3.5. Mean lymphocyte proliferation (counts per minute) in response to 
Pokeweed stimulation for dexamethasone treated Gulf Coast Native neonatal lambs 
compared to untreated Gulf Coast Native neonatal lambs, on weeks —1, 6 , and 9 of 
dexamethasone treatment.

Media PW (4 jig/ml) PW (2 pg/ml) PW (1 ng/ml)

Weeks o f treatment Weeks o f treatment Weeks o f treatment Weeks o f treatment

Treat. N  -1 6 9 - 1 6  9 - 1 6  9 - 1 6  9

None 4 432 611 1866 

Dexa 4 3590 1906 469
9067 34128 34056 

34695 35331 39363
7636 30827 43933 

25837 37721 35541

5703 23265 34199 

25917 35523 29822

3.3.3.4. ELISA for H. contortus WWA

The antibody levels started high in both groups and steadily declined 

through week 5 o f dexamethasone treatment due to depletion o f  colostral antibody
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(Table 3.6.)- At this time antibody levels increased in both groups and remained 

elevated in untreated lambs whereas antibody levels declined continually in the 

treated group.

3.3.4. Proliferation Assays on Lymph Node Lymphocytes

No differences were seen in the mean CPM o f  lymphocyte proliferation in 

response to PHA or ConA stimulation o f  abomasal lymph node lymphocytes (Table

3.7.), therefore, dexamethasone treatment did not affect T lymphocyte functionality, 

o f the groups.

Table 3.6. Mean percent OD to H. contortus whole worm antigen for 
dexamethasone treated Gulf Coast Native neonatal lambs compared to untreated 
Gulf Coast Native neonatal lambs___________________________________

Weeks of  treatment

Treatment N O *  1 2 3  4 5  6 7  8 9  Mean

None 4 9.0 7.9 5.8 5.4 1.4 0.9 5.2 5.6 4.7 5.0 5.1

Dexa 4 16.9 14.2 11.0 8 . 8  3.4 0.9 4.9 3.6 2.8 1.5 7.0

* At week 0, lambs were 4 weeks o f age.

Table 3.7. Mean lymphocyte proliferation (counts per minute) in response to 
Concavalin A and Phytohemagglutinin stimulation o f  abomasal lymph node 
lymphocytes o f dexamethasone treated Gulf Coast Native neonatal lambs compared 
untreated Gulf Coast Native neonatal lambs________________________________

ConA PHA

Treat N  Media 4 ng/ml 2 jig/ml 1 jig/ml 8  fag/ml 6  pg/ml 4 (rg/ml

None 4 640 21267 12733 6557 14912 17894 15320

Dexa 4 454 27270 19948 18369 19600 19754 15518

3.3.5. Brucellosis Card Test

On week 8  o f  the study, GCN lambs were vaccinated with a killed B. 

abortus strain 19 vaccine. The brucellosis card test showed that all lambs were 

negative prior to vaccination and all treated lambs remained unresponsive to the
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vaccination, where as untreated Iambs had a strong response to vaccination (Table

3.8.).

Table 3.8. Brucellosis card test results o f  dexamethasone treated (T) Gulf Coast 
Native neonate lambs compared to untreated (C) Gulf Coast Native neonatal lambs 
on vaccination (week 8  o f dexamethasone treatment) and 1 0  days after vaccination 
(week 1 0  o f  dexamethasone treatment).

Group Week 8 Week 10

9052 C (-) 3(+)

9058 C (-) 3(+)

9059 C (-) 3(+)

9081 C (-) 3(+)

9064 T (-) (-)
9080 T (-) (+/-)

9084 T (-) (+/-)
9085 T (-) (+/-)

3.4. Discussion

In this study dexamethasone treatment resulted in naturally resistant GCN 

neonatal Iambs becoming more susceptible to H. contortus infections as evidenced 

by higher FEC and nematode burden and lower PCV than non-treated GCN lambs. 

Previous studies by others demonstrated that sheep were rendered more susceptible 

to H. contortus challenge after corticosteroid treatment (Miller et aL, 1985; Huntley 

et aL, 1992; Mathews et al., 1979; Jackson et al., 1988). Two o f those studies 

showed that treatment with corticosteroids was associated with a decrease in the 

mast cell and globule leukocyte population (Miller et al., 1985; Huntley et al., 

1992). These two cell types play a role in immune exclusion which is one o f  the 

most important effector mechanisms acting in resistance to GI nematode infection 

and specially against H. contortus infections (Miller, 1984; Huntley et al., 1998;
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Jackson et al., 1988). Other studies indicated that lymphocytes are also important in 

resistance to GI nematode infection (Kambara and McFarlane, 1996; PfefFer et al., 

1996; Gill et al., 1992, 1993; Karanu et al., 1997). It has also been demonstrated that 

corticosteroid treatment affected the number and functionality o f  lymphoctes 

(Mathews et al., 1979; Chun et al., 1986; Cohen, 1972; Pruett et aL, 1987; Cohen et 

al., 1984; Hamid and Aldeen, 1992). Similar to those studies, in this study, GCN 

lambs treated with dexamethasone had a consistent depression in lymphocyte 

numbers from week 3 to the end o f the study and the depression became significant 

at week 7. Chung et al. (1986) treated mice with glucocorticosteroids and found that 

the capacity o f  normal lymphocytes to localize within tissue sites o f  antigen 

challenge was severely decreased. They also found that the lymphocyte binding 

capacity o f high endothelial venules from the lymph nodes was significantly 

decreased. They therefore suggested that lymphocytopenia was the consequence of 

enhanced sequestration o f  mature lymphocytes to the bone marrow due to changes 

in the circulating lymphocyte receptiveness o f the bone marrow compartment. This 

study also observed a marked lymphocytopenia after dexamethasone treatment that 

might have been a  consequence o f lymphocyte sequestration in bone marrow 

compartment.

Presson et al. (1988) treated a resistant genotype o f  Merino sheep with 

dexamethose that resulted in reversion to susceptibility as evidenced by no 

differences with the susceptible genotype in FEC, nematode burdens, nematode 

weights, thymus weights, and globule leucocyte numbers in response to infection 

with H. contortus. In  this study, GCN neonatal lambs treated with dexamethasone 

showed higher FEC and nematode burdens, and lower PCV and lymphocyte

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

numbers than the untreated lambs. The lambs treated with dexamethasone became 

susceptible to H. contortus infection and this susceptibility was similar to the 

Suffolk lambs. Whether the mechanisms responsible for the resistance between 

breeds are the same as within breed resistance remains to be elucidated, but it seems 

that there is a component o f  the immune system that is involved in both between 

breed and within breed resistance.

The results o f the ELISA test showed that there was a continual reduction o f 

antibodies to H. contortus WWA through week 5 o f the study and there were no 

significant differences between groups. This decline coincides with depletion o f 

colostral transferred antibodies to combat infection. After week 5, antibody 

production increased in each group indicating that lambs were capable o f  mounting 

an independent immune response. Again there was no significant difference 

between groups but the response in dexamethasone treated lambs consistently 

decreased and remained lower than untreated lambs through to the end o f  the study. 

These results concur with Mattews et aL (1979) and Michel and Sinclair (1969) 

where corticosteroid treatment reduced but did not totally suppress production o f  

antibodies. Even though we did not find differences in the antibody titers to H. 

contortus WWA between groups, there was a marked reduction o f antibodies to B. 

abortus vaccine in the dexamethasone treated group which indicated that the 

dexamethasone treatment did suppress antibody production. These results suggest 

that humoral antibodies may not be that important in resisting initial H. contortus 

infections in neonatal GCN lambs.

No significant differences were seen in lymphocte responses to T- 

lymphocyte mitogens PHA, ConA, and PW  between control and dexamethasone
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treated Iambs. These results are consistent with Eckblad et al. (1984) where no 

differences were seen between control and dexamethasone-treated animals in 

lymphocyte transformation responses to PHA and ConA when dexamethasone was 

used at a  dose rate o f 0.2 mg/kg injected three times a week for 26 days. Pruett et al

(1987) observed that dexamethasone treatment had a suppressive effect on 

lymphocyte functionality that was more notable at suboptimal dilutions o f  the 

mitogens. Suppression was minimal or not observable at optimal or greater 

concentrations o f  mitogens. They suggest that certain subpopulations o f  T 

lymphocytes may exist that have different sensitivities to the mitogens and 

dexamethasone. In this study, steroid resistant lymphocyte might have been 

circulating and collected for lymphoproliferation assays resulting in a similar 

response to mitogen stimulation in the groups. Muscoplat et al (1975) suggested that 

recovery o f  responsiveness to PHA was possibly the result of changes in the ratio o f  

two populations o f T lymphocytes, one steroid sensitive and one steroid resistant. 

Initial suppression in response to high mitogen was the result o f  a  higher ratio o f 

steroid-sensitive cells. However, with the continued administration o f 

dexamethasone, e limination o f steroid-sensitive cells from circulation would occur. 

Recovery o f  responsiveness would result with accompanying recruitment o f steroid- 

resistant cells into circulation, thereby favoring a responsive ratio. In this study, the 

lack o f  a difference in T lymphocyte response to mitogens between dexamethasone 

treated and control lambs might suggest that the prolonged treatment with 

dexamethasone changed the ratio o f  the sub-populations of T lymphocytes resulting 

in a  higher proportion of steroid-resistant cells.
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Although lymphocyte response to mitogen stimulation was similar in both 

groups, there was a significant depression in lymphocyte numbers in the treated 

group compared to the untreated group. Dexamethasone treatment might have also 

resulted in inhibition o f homing  o f T lymphocytes to the abomasal mucosa and 

therefore, fewer B lymphocytes were stimulated to produce antibodies. A decrease 

in antibody production (which could have been IgE) might have resulted in less IgE 

bound to mast-cells and consequently a  lower inflammatory response associated to a 

higher nematode establisment in treated lambs. It might also be suggested that 

dexamethasone decreased mast cells and globule leukocyte numbers as was shown 

in several studies (Huntley et al., 1992; Winter et al., 1997; Miller et al., 1985). 

Although this cannot be confirmed in this study, the higher FEC and nematode 

counts seen in the treated lambs may suggest that dexamethasone treatment was 

effective in suppressing the inflammatory response allowing higher nematode 

establishment in the treated lambs compared to the control lambs. The results o f 

this study suggest that some component(s) o f  the immune response were affected by 

dexamethasone treatment that may be important in the natural resistance o f  GCN 

neonatal lambs to H. contortus infection.
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CHAPTER 4

EFFECT OF CORTICOSTEROID IMMUNESUPPRESSION OF GULF 
COAST NATIVE POST-WEANED LAMBS ON RESISTANCE TO 

HAEMONCHUS CONTORTUS INFECTION

4.1. Introduction

There is a substantial body o f evidence that supports variation among breeds 

in resistance to Haemonchus contortus. Breeds with superior resistance to H. 

contortus include the Scottish Blackface (Abbott et al., 1985 a,b), Red Massai 

(Preston and Allonby, 1978, 1979; Bain et al., 1993), Barbados Blackbelly, Gulf 

Coast Native (GCN), and St. Croix (Loggins et al., 1965; Bradley et al., 1973; 

Yazwinski et al., 1979, 1980; Courtney et al., 1985a,b; Gamble and Zajac, 1992; 

Bahirathan et al., 1996; Miller et al., 1998). Most o f the evidence that shows that the 

immune system as involved in resistance to nematode infections is related to 

variation within breed (Presson et al., 1988; Stear and Murray, 1994; Gill et al., 

1993; Bisset et al., 1996). The mechanisms responsible for the superior resistance of 

these breeds have not yet been determined. It has been demonstrated that Gulf Coast 

Native (GCN) sheep have a higher resistance to Haemonchus contortus infection 

than Suffolk sheep (Bahirathan et al., 1996; Miller et al., 1998). This higher 

resistance is characterized by lower fecal egg count (FEC) and nematode burden in 

GCN lambs than in Suffolk lambs. The major difference found between breeds was 

that H. contortus was predominant in Suffolk lambs and Trichostrongylus 

colubriformis was predominant in GCN lambs. Suffolk lambs consistently had 

higher infections, required substantially more anthelmintic treatments, and deaths 

were only attributed to haemonchosis.
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The mechanisms involved in the immune response to nematode infections 

have been reviewed in Chapter 3. Different effector m echanism s have been 

resported for between-breed and within-breed variations in resistance to nematode 

infection. Resistant Red Massai sheep and Scottish Blackface sheep show strong 

peripheral eosinophil responses that in turn are associated with high levels o f 

globule leucocytes and o f  H. contortus-speciBc mucus IgA (Stear and Murray, 

1994). An example o f within-breed variations can be described by the differences in 

susceptibility to Teladorsagia circumcincta in Scottish Blackface sheep. Resistant 

sheep show high eosinophil, globule leucocyte and IgA plasma cell response with 

low nematode burden. Susceptible sheep have high IgGi response and high 

nematode burden. Bendixsen et al. (1995), demonstrated that the release o f sheep 

mast cell protease by mucosal mast cell degranulation is intimately associated with 

the development o f immunity to some GI nematodes such as T. colubriformis and 

H. contortus. This mechanism known as immune exclusion, in which incoming 

larvae are rapidly rejected at the site o f parasite establishment can be inhibited by 

dexamethasone treatment (Emery and McClure, 1995; Huntley et a l., 1992).

The objective o f  this study was to determine the role o f  immunity in post­

weaned GCN lambs that are naturally resistant to H. contortus infection after 

previous infection during the neonatal period.

4.2. Materials and Methods

4.2.1. Experimental Design

Fifteen five-month-old GCN lambs were removed from pasture and 

denematodeed to remove existing nematode infection. Lambs were maintained in 

dirt floor pens at the Central Station Sheep Farm, Louisiana Agricultural
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Experimental Station, Baton Rouge, LA. They were fed a growing ration and water 

was available at all times. Lambs were randomly allocated to treatment (n=8 ) and 

control (n=7) groups and the lambs assigned to the treatment group were treated 

with dexamethasone (Azium ® 2 mg/ml, injectable EM) at 1 mg/kg o f body weight 

three times a  week throughout the study period o f 14 weeks. Fecal and blood 

samples were collected on a weekly basis. Feces were collected directly from 

rectum and blood was collected by jugular venipuncture into 7 ml EDTA 

vaccutainer tubes. At week 6 , all lambs began receiving trickle infections with 500 

H. contortus L3  given orally three times a week for 9 weeks. At week 8 , all lambs 

were vaccinated with a killed Brucella abortus strain 19 (1 mg in 1 ml o f saline 

solution per animal) vaccine. Pre and 10 days post vaccination serum samples were 

tested with the brucellosis card test (Brewer Diagnostic Kit). All lambs were 

euthanized (Beuthanasia®-D, 1 ml/10 kg o f  body weight) at the end o f the study to 

recover nematodes found in the GI tract and collect abomasal lymph nodes.

4.2.2. Fecal Egg Counts (FEC)

Individual fecal samples were processed to determine FEC using the 

modified McMaster technique with 2 grams o f feces (Whitlock, 1948) (see 

appendix). FEC was reported as egg per gram (EPG) o f feces.

4.2.3 Necropsy

The protocols for necropsy processing are described in Chapter 3.

4.2.4. Peripheral Blood Tests

4.2.4.1. Hematology

Peripheral blood was processed for white blood cell differential and packed 

cell volume (PCV) as described in Chapter 2.
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4.2.4.2. Lymphoproliferation assays

Lymphoproliferation assays were run on peripheral blood mononuclear cells 

at weeks —1, 5 and 14 as described in Chapter 2.

4.2.4.3. Enzyme-linked Immunosorbent Assay (ELISA)

ELISA tests to determine antibody response to H  contortus whole worm 

antigen were run on weeks 1, 3, 5, 7, and 9 post- initial experimental infection as 

described in Chapter 2.

4.2.5. Proliferation Assays on Lymph Node Lymphocytes

Abomasal lymph nodes were aseptically removed at necropsy and processed 

as described in Chapter 3.

4.2.6. Statistical Analysis

Statistical analysis was done with raw data except for FEC and total 

nematode counts that were log transformed to stabilize variance. The means o f the 

groups were compared using PROC MIXED and PROC GLM for repeated 

measures in SAS. Tukey test was used to compare differences in nematode count 

between groups. Differences were considered statistically significant when p<0.05.

4.3 Results

4.3.1. Fecal Egg Count (FEC)

The mean FEC remained low through week 3 after experimental infection, 

increased slightly at week 4 and then increased dramatically in the treated group 

while the control group remained relatively low for the duration o f the study (Figure 

4.1). The difference in mean FEC was significant at weeks 5-9. The overall mean 

FEC for control and treated group were 497 EPG and 3722 EPG, respectively, and 

this difference was significant.
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Figure 4.1. Weekly mean fecal egg count comparing dexamethasone treated (T) 
Gulf Coast Native (GCN) post-weaned lambs with untreated (C) Gulf Coast Native 
post-weaned lam bs.* Significant differences (p<0.05). * Week 0, lambs were five-month-old.
** Lambs started receiving trickle infections o f  500 infective larvae 3 times a week

4.3.2. Nematode counts

H. contortus was the predominant species (>98%) recovered from the

abomasum o f control and treated lambs (Table 4.1). Other species found in the GI

tract were Trichostrongylus spp . and Cooperia spp. The mean number o f total

nematodes and H. contortus recovered from the abomasum o f the treated group was

significantly higher than that o f the control group.

Table 4.1. Mean nematode burden in the abomasum and small intestine of 
dexamethasone treated and untreated Gulf Coast Native post-weaned lambs.

Abomasum Small Intestine

Treat. N Haemonchus Trichostrongylus 
contortus spp.

Trichostrongylus 
spp.

Cooperia
spp. Total

None 7 6171 8 42 0 667 a

Dexa 8 1356b 31 29 13 1429 b

Means with different superscript are significantly different (p<0.05)
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4.3.3. Peripheral Blood Tests

4.3.3.1. Blood Packed Cell Volume

The mean PCV o f  the treated group was significantly lower than that o f the 

control group from week 7 (1 week after experimental infections) to the end o f the 

study (Figure 4.2).

4.3.3.2. White Blood Cell Count Differential

Lymphocyte counts did not vary that much between groups, but treated lamb 

counts had a trend o f being lower than control lamb counts, being significant at 

weeks 5, 15, and 16 (Table 4.2). The overall mean lymphocyte counts were 4910 

and 4341 in control and treated lambs, respectively, and this difference was 

significant. Mean eosinophil count o f the treated group was consistently lower than 

that o f the control group from week 3 and significantly lower at weeks 3, 8, and 11- 

13. The overall mean eosinophil counts were 108 and 46 in control and treated 

lambs, respectively, and this difference was significant. Mean neutrophil count was 

consistently higher in the treated group than that of the control group from week 2 

and significantly higher at weeks 3, 7, 9,10, and 12-15. The overall mean neutrophil 

counts were 2133 and 4297 in control and treated lambs, respectively, and this 

difference was significant. The mean monocyte count was significantly lower in the 

control group than that in the treatment group at weeks 2, 8, and 10. The overall 

mean monocyte counts were 165 and 274 in control and treated lambs, respectively, 

and this difference was significant. The mean basophil count of the treated group 

was significantly higher than the mean in the control group at weeks 7 and 10. The 

overall mean basophil counts were 44 and 53 for control and treated, respectively.
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4.3.3.3. Lymphoproliferation Assays

Lymphocyte proliferation assays were run a week prior to the initial 

dexamethasone treatment, and at weeks 5 and 14 o f treatment.

Lymphoproliferation in response to stimulation with ConA at 4, 2 and 1 

pg/ml is presented in Table 4.3.

40 

35 

30 

25

: g  20
a.

15 

10 

5 

0
0* 2 4 6** 8 10 12 14

Weeks o f treatment

Figure 4.2. Weekly mean blood packed cell volume comparing dexamethasone 
treated (T) Gulf Coast Native (GCN) post-weaned lambs with untreated (C) Gulf 
Coast Native post-weaned lambs. ^  Significant difference (p<0.05). *At week 0 , lambs were 
five-month-old. **Lambs started receiving trickle infections o f  500 infective larvae 3 times a week.

Lymphoproliferation in response to stimulation with PHA at 8, 4 and 2

pg/ml is presented in Table 4.4.

Lymphoproliferation in response to stimulation with PW 4, 2 and 1 pg/ml is

presented in Table 4.5.

Dexamethasone treatment did not appeared to affect T lymphocyte

functionality as evidenced by similar lymphoproliferation responses to mitogen

stimulation found between treated and control group.
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Table 4.2. Weekly mean white blood cell differential comparing dexamethasone 
treated (T, n=8) Gulf Coast Native post-weaned lambs with untreated (C, n=7) Gulf

Cell Type1

Lymphocyte Eosinophil Neutrophil Monocyte Basophil Total

Weeks2 C T C T C T C T C T C T

0 3 5644 6240 0 0 3872 3175 55 98 0 0 9571 9513

I 6046 6156 6 8 63 3028 3106 257 311 16 44 9843 9650

2 5650 5539 115 114 2426 4074 277“ 730b 47 56 8514 10513

3 6000 5293 153“ 47b 1786“ 3 9 4 9 b 135 2 2 0 30 26 8300 9525

4 5122“ 3567b 82 40 2506 2829 193 194 39 8 7943 6638

5 4509 5001 71 17.9 2097 2990 149 165 32 23 6857 8200

6 4 4805 4149 49 48 1659 3387 226 294 38 11 6757 7875

7 4955 4783 153 75 1986“ 4300 b 1 1 0 280 1 1 “ 113b 7214 9538

8 4581 3929 1 1 2 “ 6 b 2234 4165 1 0 2 “ 403 b 90 60 7129 8563

9 4699 4565 180 98 1787“ 5753 b 253 364 8 6 58 7029 10838

1 0 4334 2944 1 0 2 2 0 1 1 2 0 “ 6086 b 9 6 “ 350 b 4 7 “ LA cr 5700 9525

1 1 4452 3606 163“ 52 b 1604 4335 132 97 119 72 6471 8163

1 2 4339 4416 164“ 1 0 b 2047“ 5427 b 159 146 34 77 6743 10075

13 4593 3360 190“ 16b 1635“ 4102 b 228 314 39 95 6 6 8 6 7888

14 4705“ 3216b 79 81 2191“ 669 l b 58 171 69 67 7129 10225

15 4116“ 2688 b 53 51 2142“ 4386 b 2 0 1 243 1 1 6 6514 7375

Mean
TTTTSr—

4910“ 4341b 108“ 46 b 2133“ 4297 b 165“ 274 b 44 53 7400 9006

Weeks o f  treatment.
■“At week 0 , Iambs were five-month-old.
4 Lambs started receiving trickle infections with 500 infective larvae 3 times a week.

4.3.3.4. ELISA for H. contortus WWA

At the time o f  experimental infection, serum antibody levels (expressed as 

percent optical density OD) were similar in both groups (Table 4.6). Serum antibody 

levels remained low in the treated group and increased in the control group and this
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difference was significant from week 5 after initial experimental infection. The 

overall mean percent ODs were 12.7 and 3.3 for control and treated groups, 

respectively, and this difference was significant.

Table 4.3. Mean lymphocyte proliferation (counts per minute) in response to 
Concavalin A stimulation for dexamethasone treated Gulf Coast Native post­
weaned lambs compared to untreated Gulf Coast Native post-weaned lambs on 
weeks —1, 6, and 9 o f  treatment.____________________________________________

Media ConA (4 fig/ml) ConA (2 (ig/ml) ConA (1 fig/ml)

Weeks o f  treatment Week of treatment Week o f  treatment Week of treatment

Treat N -1 5 14 1 5 14 -1 5 14 -I 5 14

None 7 525 3065 700 24211 40482 26544 :25831 39798 24275 17970 39794 20832

Dexa 8  856 3877 171 19074 33094 19350 19441 35191 16946 16512 27745 10048

Table 4.4. Mean lymphocyte proliferation (counts per minute) in response to 
Phytohemagglutinin stimulation for dexamethasone treated Gulf Coast Native post­
weaned lambs and untreated Gulf Coast Native post-weaned lambs on weeks —1, 6, 
and 15 o f  treatment.

Media PHA ( 8  pg/ml) PHA (4 pg/ml) PHA (2 fig/ml)

Weeks o f treatment Weeks o f treatment Weeks o f treatment Weeks o f treatment

Treat. N -1 5 14 -1 5 14 -I 5 14 -I 5 14

None 7 525 3065 700 23523 26572 30953 18712 28659 30513 19756 27301 30943

Dexa 8  856 3877 171 16871 15953 25372 17026 15077 24649 14483 13088 22991

Table 4.5. Mean lymphocyte proliferation (counts per minute) in response to 
Pokeweed stimulation in dexamethasone treated Gulf Coast Native post-weaned 
lambs and untreated Gulf Coast Native post-weaned lambs on weeks —1, 6, and 15 
o f treatment.

Media PW (4 tig/ml) PW (2 jig/ml) PW (1 jig/ml)

Weeks o f treatment Weeks o f treatment Weeks o f treatment Weeks o f  treatment

Treat. N -I 5 14 -I 5 14 -1 5 14 -1 5 14

None 7 444 3877 514 20989 30953 22265 23648 30513 11968 23496 30943 16645

Dexa 8 318 3644 323 18099 25372 16304 18194 24649 15134 17549 22991 10526
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4.3.4. Proliferation Assays on Lymph Node Lymphocytes.

Lymphocytes were stimulated with ConA, PHA, and PW. No significant 

differences were found in lymphocyte response to stimulation between the groups 

and across the different mitogens (Table 4. 7).

Table 4.6. Mean percent OD to Haemonchus contortus whole worm antigen in 
dexamethasone treated Gulf Coast Native post-weaned lambs and untreated Gulf 
Coast Native post-weaned lambs.___________________________________________

Weeks after Initial Experimental Infection

Treatment N 1 3 5 7 9 Mean

None 7 4.6 7.9 14.2a 19. la 17.5a 12.7a

Dexa 8 2.4 2.6 4.1b 3.5b 3.8b 3.3b

Means with unlike superscripts are significantly different (p<0.05).

Table 4.7. Mean lymphocyte proliferation (counts per minute) in response to 
Concavalin A, Phytohemagglutinin, and Pokeweed stimulation in abomasal lymph 
node lymphocytes of dexamethasone treated Gulf Coast Native post-weaned Iambs 
and untreated Gulf Coast Native post-weaned lambs.

ConA fug/mD PHA fug/mD PW fug/mD

Treat. N  Media 4 2 1 Media 8 4 2 Media 4 2 I

None 7 1362 16476 15724 14343 1362 14738 15654 15687 912 24503 22158 19935

Dexa 8 254 11648 II82I 10588 254 10382 I204I 10872 529 21441 19236 I 758I

Dexamathesone treatment did not affect functionality o f T cells in the lymph 

nodes as evidenced by the similar responses treated and control groups.

4.3.5. Brucellosis Card Test

On the week o f the brucella vaccination (week 8) all Iambs were negative in 

the card test except for one animal in the treated group with a 2+ reading and one in 

the control group with a + reading (Table 4.8). Treated lambs remained negative at 

week 12 and became slightly positive on week 16. All but 1 control lamb showed 

strong seroconversion on weeks 12 and 16.
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Table 4.8. Brucellosis card test results o f  dexamethasone treated (T) Gulf Coast 
Native post-weaned lambs compared to untreated (C) Gulf Coast Native post­
weaned lambs on vaccination (week 8 o f  dexamethasone treatment), 10 days after 
vaccination (week 12), and at the end o f the study (week 16).

ID Group Week 8 Weekl2 Week 16

9055 T (-) (-) (-)
9070 T (-) (-) (+)
9073 T (-) (-) (+)
9088 T (-) (-) (+)
9089 T (-) 2(+) (+)
NT1 T 2(+) (-) 2(+)

NT3 T (-) (-) (-)
NT5 T (-) (-) (+)
9066 C (-) (+) 2(+)

9068 C (-) 2(+) 2(+)

9071 C (-) (-) (+)
9075 C (-) 2(+) 2(+)

9077 C (-) 2(+) 2(+)
9087 C (-) 2(+) 2(+)

NT4 C (+) (+) 2(+)

4.4. Discussion

S imilar to what was observed in the previous study using neonatal GCN 

lambs, post-weaned GCN lambs treated with dexamethasone became susceptible to 

H. contortus infection as evidenced by higher FEC and nematode count and lower 

PCV than control lambs. The results o f  this study also concur with Presson et al.

(1988), where a resistant genotype o f Merino sheep was rendered susceptible to H. 

contortus challenge after corticosteroid treatment. Several studies have 

demonstrated that corticosteroid (dexamethasone) treatment resulted in abolishment
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o f  acquired but not innate immune responses to H. contortus infection (Adams, 

1982; Adams and Davies, 1982; Adams, 1988; Huntley et al., 1992; Jackson et al., 

1988; Miller et al., 1985). In this study, dexamethasone treatment appeared to have 

an effect on acquired immunity o f  post-weaned Iambs that were previously exposed 

to H. contortus infection during the neonatal period.

The importance o f lymphocytes in resistance to GI nematodes and the effect 

o f  dexamethasone treatment on lymphocyte count has already been reviewed in 

Chapter 3. In this study, dexamethasone treatment resulted in consistently lower 

lymphocyte count in treated lambs compared to control lambs. Increases in blood 

and mucosal eosinophils have also been associated with the development o f  

resistance to nematode parasites (Thamsborg et al., 1999; Rainbird et al., 1998; 

Winter et al., 1997; Douch et al., 1986; Douch & Morum, 1993; Gorrell et al., 1988; 

Gill, 1991; Buddie et al., 1992; Pfeffer et al., 1996). Eosinophils have been 

observed to accumulate around the invasive L3 o f  H. contortus (Gorrell et al., 1988) 

and T. colubriformis (Douch et al., 1986), and eosinophil potentiating activity in 

efferent lymph was shown to be inversely correlated with nematode burden 

challenge infection with Teladorsagia circumcincta (Stevenson et al., 1994). 

Several studies have indicated that dexamethasone treatment resulted in a decreased 

number o f  eosinophils (Buddie et al., 1992; Hamid & Mohi Aldeen, 1992; 

Eldestone et al., 1978; Winter et al., 1997). In this study, GCN Iambs treated with 

dexamethasone showed consistently fewer eosinophils than the control lambs. These 

results suggest that lymphocytes and eosinophils (components o f the cellular 

immune response) may be important in the resistance o f  GCN sheep to H. contortus 

infection.
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Antibody production has also been associated with the immune response to 

GI nematode infection. Gill et al. (1993) found significantly higher anti-77. 

contortus IgA and IgGi antibody levels in a resistance genotype o f Merino sheep 

compared with random-bred Merino sheep and that there was a negative correlation 

between FEC and the levels o f IgA and IgGt. Stear and Murray (1994) reported that 

sheep with the fewest IgA containing plasma cells had the highest Teladorsagia 

circumcincta burdens. Huntley et al. (1998) showed that there was an increase in 

IgE concentrations during primary or secondary T. circumcincta challenge, and the 

source o f  this IgE was mucosal or associated lymph nodes. In this study, treated 

lambs showed a significantly lower production o f  total antibodies to H. contortus 

WWA than the control lambs from week 5 to the end o f  the study. Treated lambs 

also showed a lower response to B. abortus than the control lambs. Dexamethasone 

treatment affected antibody production as evidenced by lower antibody production 

to H. contortus and this was associated with a higher susceptibility to this nematode 

infection in treated lambs compared to the control Iambs. It may therefore be 

suggested that humoral immunity may be important in the resistance o f  GCN sheep 

to H. contortus infection.

Similar to that observed with neonatal GCN sheep, no significant differences 

were seen in lymphocte responses to T-cell mitogens PHA, ConA, and PW between 

control and dexamethasone treated lambs. It has been suggested two subpopulations 

o f  T lymphocytes exist: steroid-susceptible and steroid-resistant (Muscoplat et al., 

1975; Pruett et al., 1987). A shift in the subpopulation o f T lymphocytes from 

steroid susceptible to resistant may explain the similar response to mitogen 

stimulation between dexamethasone treated and control groups. On the other hand,
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even though dexamethasone treatment affected lymphocyte numbers, the dose used 

might not have affected T functionality as evidenced by the similar responses seen 

in the lymphoproliferation assays for treated and control group.

GCN lambs treated with dexamethasone were rendered susceptible to H. 

contortus infection as evidenced by higher FEC and nematode counts than control 

lambs. Dexamethaso n e  treatment might have affected the inflammatory response 

that is generated in GI nematode infection resulting in this difference. Treated lambs 

showed a  decrease in lymphocyte numbers that might have been a consequence o f  

the redistribution o f  these cells outside the circulatory system and concentration in 

the lymph nodes and bone marrow as suggested in previous studies (Panaretto and 

Wallace, 1978; Cohen, 1972). The redistribution o f  lymphocytes to the lymph nodes 

and bone marrow might have resulted in decrease or absence o f directing o f 

lymphocytes to the site o f  the infection (GI mucosa) and consequently a reduced 

number o f stimulated B lymphocytes with less antibody production. A decrease in 

IgE production might have resulted in reduced binding o f  IgE bound to mast-cells 

and consequently reduced release o f preformed and newly formed mediators that are 

responsible o f  the inflammatory response characterized by increased vascular 

permeability and dilatation, increased mucus secretion and increased peristalsis. The 

consequence o f the inflammatory response is the creation o f  a hostile environment 

for the incoming larvae or the established nematodes that are expelled from the 

preference sites. Although this cannot be proven in this study, treated Iambs did 

have a higher number o f  nematodes than control lambs and that might have been a 

consequence o f a lower inflammatory response due to dexamethasone treatment. 

The consequence o f  dexamethasone treatment was an increased susceptibility to H.
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contortus infection o f treated lambs than control lambs and this suggested that 

immunity may play some role in the higher resistance o f  GCN to H. contortus 

infection-
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CHAPTERS

EFFECTS OF CD4+ T LYMPHOCYTES DEPLETION ON RESISTANCE OF 
GULF COAST NATIVE SHEEP TO H. CONTORTUS INFECTION

5.1. Introduction

Several studies have demonstrated the importance of CD4+ T lymphocytes in 

the immunity to gastrointestinal nematode (Koyama et al., 1995; Katona et al., 

1988; Urban et al., 1991; G ille ta l, 1993, 1992; Karanu e ta l,  1997).

Monoclonal antibodies (mAh) to CD4+ T lymphocytes have been shown to 

be invaluable in characterizing and defining the role o f these lymphocytes in local 

immune responses to gastrointestinal (GI) nematodes. Using immunocytochemistry 

and mAb antibodies to CD4+ and CD8 + T lymphocytes, Kambara and McFarlane 

(1996) examined T lymphocyte populations from the intestinal lymph duct and 

blood o f sheep infected with Trichostronglus colubriformis. They indicated that 

parasite antigen-primed CD4+ T lymphocytes were associated with protective 

immunity particularly in older animals.

Several laboratory animal models have established that CD4 T lymphocytes 

are required for immunity to GI nematode infections. Koyama et al. (1995) 

demonstrated that in vivo depletion of CD4+ T lymphocytes resulted in the 

suppression o f the expulsion o f Trichinella muris in BALB/c mice. In a similar 

study, Katona et al. (1988) depleted mice o f CD4+ T lymphocytes which resulted in 

prevention of spontaneous cure of Nippostrongylus brasiliensis infection and 

inhibition o f CD4+ T lymphocyte function including induction o f IgE response and 

intestinal mucosal mast cell hyperplasia. They also demonstrated that both the
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persistence o f increased serum IgE levels in mice infected with N. brasiliensis after 

the peak period o f IgE secretion and the development o f a secondary IgE response 

to re-infection are dependent on the continuing presence o f CD4+ T lymphocytes. 

Urban et al., (1991) indicated that CD4+ T lymphocytes are also required for the 

induction and maintenance o f  an IgE response following Heligmosomoides 

polygyrus infection in mice. In addition, adult nematode fecundity was increased in 

the depleted mice compared to the control non-depleted. This indicated that CD4+ T 

lymphocytes play a critical role in the stability and fecundity o f gastrointestinal 

nematode population.

Mouse mAb antibodies have also been successfully used to deplete CD4+ T 

lymphocytes in cattle and sheep. Naessens et al. (1998) effectively depleted cattle 

for CD4+ and CD8 + T lymphocytes using mAb to bovine T lymphocyte antigens. 

They observed that when depletion was effected by intravenous injections o f  murine 

antibody isotypes that activate complement (IgG2a) the targeted cells disappeared 

from peripheral blood in less than 1 hour. In contrast, when non-complement 

binding antibody (IgGl) was used, the target cells remained in circulation for 

several days coated with mAb and were slowly removed until their near-total 

disappearance more than 1 week after the treatment. Gill et al. (1992) successfully 

depleted sheep o f their CD4+ T lymphocytes and showed that depleted lambs did not 

mount an antibody response to ovalbumin (OVA) and they did not sbow a skin 

reaction to T-lymphocytes mitogens. When anti-CD4+ T lymphocyte mAb was 

administrated to a genetically selected line o f Merino lambs resistant to H. 

contortus, their expression o f  resistance was abrogated as indicated by significantly 

higher fecal egg counts (FEC) and nematode burdens found in th e  CD4+ T-
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lymphocyte-depleted lambs compared with those of controls (Gill et al., 1993). In 

addition, host responses associated with resistance to H. contortus including 

mucosal mast cell hyperplasia, tissue eosinophilia, and antibody responses to H. 

contortus were also significantly suppressed in the lymphocyte depleted lambs. 

Based on the lack o f  antibody response they concluded that T lymphocyte help is 

required for the generation o f anti-parasite antibody in Haemonchus-infected sheep. 

Karanu et al. (1997) indicated that CD4+ T lymphocyte depletion partially abrogated 

immunity induced by gut antigen immunization against challenge infection with H. 

contortus. These findings are consistent with Howard et al. (1989) where calves 

depleted o f their CD4+ T lymphocytes showed a reduced ability to mount an 

antibody response to human 0 RBC and OVA. Accordingly, Wofsy et al. (1985) 

demonstrated that mice treated with monoclonal antibody to L3T4 cells were unable 

to generate an IgG response to either bovine serum albumin or OVA.

The objective o f  this study was to determine the role o f  CD4+T lymphocytes 

in the natural resistance o f  GCN sheep to H. contortus infection.

5.2. Materials and Methods

5.2.1. Animals

Ten five-month-old GCN lambs raised on pasture at the Central Station 

Sheep Farm, Louisiana Agricultural Experimental Station, Baton Rouge, LA., were 

randomly assigned to a  treatment (n=5) or control (n=5) group. All animals were 

denematodeed with albendazole (Valbazen, Pfizer, 10 mg/kg) and levamisole 

(Levasole, Schering-Plough, 8 . 8  mg/kg) at the beginning o f the study and kept in 

dirt floor pens for the duration o f  the study. Lambs were fed a growing ration and 

water was available at all times.
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5.2.2. Monoclonal Antibody Treatment

Mouse anti-ovine CD4+ monoclonal antibodies from the 44.97 hybridoma 

cell line provided by the Centre o f Animal Biotechnology, the University o f 

Melbourne, Melbourne, Australia, were produced in tissue culture at the LSU 

Medical Center Core Laboratory. Lambs in the treated group were injected IV with 

anti-CD4+ mAb as shown in Table 5.1.

Table 5.1. Monoclonal antibody treatment schedule in Gulf Coast Native post-
weaned lambs._____________________________________________________________

Days o f  mAb treatment

-3 -1 1 3 5 7 10 14 17

Group N

None 5 - - - - - - - - -

CD4+mAb 5 2mg 2mg 2mg 4 mg 4 mg 4 mg 4 mg 2mg 2mg

5.2.3. Experimental Infections

All lambs received an experimental infection o f  10,000 H. contortus L3  on 

day 0  by oral inoculation.

5.2.4. Fecal and Blood Samples

Individual fecal samples were collected directly from rectum on a weekly 

basis and processed to determine FEC using the modified McMaster technique with 

2 grams o f  feces (Whitlock, 1948) (see appendix). Results were reported as egg per 

gram (EPG).
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Peripheral blood was collected in 7 ml EDTA vaccutainer tubes via jugular 

venipuncture. White blood cell (WBC) differential and packed cell volume (PCV) 

were run as described in Chapter 2.

5.2.5. Necropsies

The necropsies were done at day 28 after experimental infection where 

abomasum, small intestine and large intestine were collected for nematode 

enumeration and identification following the procedure described in Chapter 3.

5.2.6. Flow Cytometry

Peripheral whole blood was collected biweekly via jugular venipuncture into 

7 ml heparin vaccutainer tubes and CD4+ lymphocytes were stained by an indirect 

procedure to be enumerated on a FACScan Becton Dickison flow cytometer. The 

indirect staining procedure was done as follows: 50 pi o f blood was incubated for 

30 min at room temperature and in the dark with 50 pi o f mouse anti-CD4 mAb 

diluted 1/50 in PBS. Cells were then washed with 2 ml volumes of IX PBS and 

were centrifuged for 5 min at 1400 rpm. After centrifugation the supernatant was 

decanted and 50 pi o f 1:200 diluted anti-IgG FITC conjugate was added to the 

tubes. The samples were then vortexed and incubated for 30 min at room 

temperature in the dark. After the second incubation IX  NH4C1 lysis buffer (see 

Appendix) was added to the tubes to lyse the erythrocytes and the samples were 

centrifuged again at 1400 rpm for 5 min. Once the supernatant was decanted the 

cells were washed with IX  PBS and centrifuged. The supernatant fluid was 

decanted and the pellet was vortexed and the cells were fixed with 2 0 0  pi of 1 % 

paraformaldehyed-PBS (see Appendix) for flow cytometer analysis.
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5.2.7. FACS of CD4"r Lymphocytes from Mesenteric Lymph Nodes

Mesenteric lymph nodes were removed at necropsy and transferred to plastic 

petri dishes, cut and mashed through a strainer. The strainer was then rinsed into 

another petri dish with PBS to wash out the cells and the remaining liquid was 

transferred into a 50 ml centrifuge tube. The cells were then centrifuged at 1500 

rpm for 5 min and after decanting the pellet was resuspended in PBS and 

centrifuged again. After three more washes and centrifugations in PBS the cells 

were stained using the same procedure described previously for peripheral whole 

blood cells for flow cytometer analysis.

5.2.8. ELISA for H. contortus WWA

ELISA tests were run on weeks: -1, 1, 2, 3, 4, and 5 o f treatment as 

described in Chapter 2.

5.2.9. Lymphoproliferation Assays.

Lymphoproliferation assays were run on peripheral blood on day +7 as 

described in Chapter 2.

5.2.10. Statistical Analysis

Statistical analysis was done with raw data except for FEC and total 

nematode count which were log transformed to stabilize variance. The means of the 

groups were compared using PROC MIXED and PROC GLM for repeated 

measures in SAS. Tukey test was used to compare differences in nematode count 

means between groups. Differences were considered statistically significant when 

p<0.05.
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5.3. Results

One o f  the animals in the treatment group did not respond to the treatment 

and showed normal CD4+ T lymphocyte numbers throughout the study, therefore, it 

was not included in the statistical analysis o f  any o f  the variables measured.

5.3.1. Fecal Egg Counts

The FEC o f  the lambs increased at week 3 and after experimental infection 

being more marked in the treated lambs than in the control lambs. The overall 

means were 325 EPG and 1431 EPG for controls and treated, respectively, and this 

difference was significant (Figure 5.1).

5.3.2. Nematode Counts

Haemonchus contortus was the only species identified in the abomasum and 

more than 99% were adults. No nematodes were found in the small or large intestine 

o f  either o f  the groups. The mean nematode count in the control group (698) was 

significantly lower than the mean count (1743) in the treated group.

5.3.3. FACS

The effect o f CD4 depletion was not seen until 10 days after the initial 

treatment. Figures 5.2. and 5.3. show the histogram o f the number o f CD4+ stained 

cells in a  normal lamb (control) and a depleted lamb (treated), respectively. The 

mean percent o f CD4+ stained remained similar through day 6 , and from day 9 to 

the end o f  the study CD4+ lymphocytes dropped significantly and were essentially 

gone from peripheral circulation (Table 5.1.).

5.3.4. FACS on Mesenteric Lymph Node Lymphocytes

There was no significant difference in CD4+T lymphocytes percent between 

treated (Mean: 41.9%, Range: 31.7-50.6%) and controls (Mean: 48.9%, Range:
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43.1-53.1) which indicates that CD4+T lymphocytes in the lymph nodes of the 

treated lambs were not depleted.
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Figure 5.1. Weekly mean fecal egg counts comparing CD4+ depleted (T) Gulf Coast 
Native post-weaned lambs to undepleted (C) Gulf Coast Native post-weaned lambs. 
El: experimental infection o f 10,000 H. contortus L3

Table 5.2. Percent o f CD4+ lymphocytes stained in CD4+ depleted (T) Gulf Coast 
Native post-weaned lambs compared to undepleted (C) Gulf Coast Native post­
weaned lambs.

Day o f treatment

Treatment N -1 2 6 9 13 16 20 27 Mean

None 5 34.2 29 28 29.5a 28.9 a 29.4 a 31 a 31. l a 30.1 a

CD4*mAb 5 27.4 27.5 28.6 0.10b 0.09 b 0.07 b 0.05 b 0.06 b 10.5 b

Means with unlike superscripts are significantly different (p<0.05).

5.3.5. Peripheral Blood Tests

5.3.5.1. Blood Packed Cell Volume

There was no difference in PCV between groups at any time during the 

study (Figure 5.5).
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Figure 5.2. Histogram o f number of CD4+ stained cells in a normal Gulf Coast
Native post-weaned lamb
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Figure 5.3. Histogram o f number CD4+ stained cells in a depleted Gulf Coast
Native post-weaned lamb
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Figure 5.4. Weekly mean packed cell volume in CD4+ depleted (T) Gulf Coast 
Native post-weaned lambs to undepleted (C) Gulf Coast Native post-weaned lambs. 
El: Experimental infections o f 10, 000 H. contortus L3.

5.3.5.2. White Blood Count Differential

No differences were seen in white blood count differential except for 

basophil mean count that was significantly higher in the treatment group compared 

to the control group at weeks 4 and 5 o f treatment (Table 5.2).

5.3.5.3. ELISA for H. contortus WWA

ELISA tests to determine antibody titer to H. contortus WWA were done 

weekly. No differences were found in the mean antibody titer between groups 

(Table 5.9.).

5.3.5.4. Lymphoproliferation Assays

Because CD4+ lymphocytes were still circulating on day 6 , proliferation 

assays were run on day 7 to test functionality of the lymphocytes. PHA, ConA, and 

PW were used at the same doses described in Chapter 2. Results o f  the 

lymphoproliferation assays showed that the treatment did not affect CD4+ 

lymphocyte functionality as evidenced by similar responses seen to mitogen 

stimulation in both groups.
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Table 5.3 .Weekly mean white blood count differential in CD4+ depleted (T) Gulf 
Coast Native post-weaned lambs to undepleted (C) Gulf Coast Native post-weaned 
lambs________________________________________________________________

Type o f cells1

Lymphocyte Eosinophil Neutrophil Monocyte Basop-liil Total

Weeks2 C T C T C T C T C T C T

1 4769 4207 313 118 2422 1718 92 136 25 21 7620 6200

2 5127 4552 720 1970 1680 1004 153 112 60 113 7740 7750

3 5090 5021 1074 1598 1578 1545 114 94 64 72 7920 8350

4 5799 4822 535 165 1725 1416 104 153 57“ I95b 8220 6750

5 4909 4788 236 267 1438 1238 149 131 2 8 “ 126 b 6760 6550

Mean 5139 4678 576 824 1769 1384 122 125 4 7 “ 105 b 7652 7120

Differences within cell type with unlike superscripts are significantly different (p<0.05).
2Weeks o f  treatment

Table 5.4. Weekly mean OD to Haemonchus contortus whole worm antigen in 
CD4+ depleted (T) Gulf Coast Native post-weaned lambs to  undepleted (C) Gulf 
Coast Native post-weaned lambs_________________________________________

Weeks o f treatment

Treatment -1 0 1 2 3 4 Mean

None 0.3434 0.7094 0.5814 0.5252 0.6694 0.6312 0.58

CD4TnAb 0.4244 0.6858 0.4974 0.601 0.6768 0.6102 0.58

Table 5.5. Mean stimulation index in response to Phytohemagglutinin, Concavalin 
A, and Pokeweed stimulation in CD4+ depleted Gulf Coasrt Native post-weaned 
lambs to undepleted Gulf Coast Native post-weaned lambs_________

PHA fug/ml) ConA fue/mll PW fug/mD

Treatment N 8 4 2 4 2  1 4 2  I

N o n e  5 87.5a 82.2“ 73.5“ 140.2“ 129.9“ 112.3“ 87.7“ 83.7“ 75.6“

CD4+ mAb 5 17b 13.8b 8.7b 22.5b 20.4b I7.7b 17.3b 17.3b 16.5b

Means with unlike superscript are significantly different (p<0.05).

5.4. Discussion

Several studies have established the importance o f CD4+ T lymphocytes in 

immunity to GI nematodes (Koyama et al., 1995; Katona et a l., 1988; Urban et al.,
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1991; GDI et al., 1993, 1992; Karanu et al., 1997). Similar to what was reported by 

Gill et al. (1993) for genetically derived resistant Merino lambs, naturally resistant 

GCN Iambs that were depleted o f CD4+ T lymphocytes became susceptible to 

infection with H. contortus. In both studies, lambs treated with anti-CD4+ mAb 

showed a  significantly higher FEC and nematode burden than the control lambs. In 

contrast with Gill et al., (1992, 1993), antibody titers did not differ between groups. 

In  that study, the anti-CD4+ mAb used was complement fixing (IgG2a) and CD4+ T 

lymphocytes were depleted within 48 hrs. (before experimental infection). In this 

study, a  non complement binding anti- CD4+ mAb (IgGi) was used and CD4+ T 

lymphocyte depletion was not seen until 9 days after initial treatment. Therefore 

CD4+ T lymphocytes were still circulating when the lambs were challenged. It may 

be suggested that during this period circulating CD4+ T lymphocytes were providing 

help to B lymphocytes to produce immunoglobulins to H. contortus WWA resulting 

in a  normal antibody response in treated lambs. In a previous study, (Miller, 

unpublished observations) GCN lambs that were given anti-CD4+ complement 

fixing T lymphocyte mAb there was a substantial decrease ranging from 50-80% in 

antibody titer ft>r IgA, IgM, and IgG2  compared to control non-treated, and no 

difference was found in IgGi levels. In this study, total IgG was determined, 

therefore, normal IgGi titers might have obscured other isotypes. On the other hand, 

the results are consistent with Howard et al. (1992) where calves depleted o f  their 

CD4+ T lymphocytes produced an antibody response to bovine virus diarrhoea virus 

similar to that o f  controls.

In this study there were no differences in the PCV between treated and 

controls. Even though the treated group had a  significantly higher nematode burden

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

than the control group the difference in the number o f  nematodes might not have 

been enough to affect the PCV. On the other hand, lambs were experimentally 

infected after the second depletion when they still have circulating CD4+ T 

lymphocytes and therefore, will still reject some o f  the incoming larvae not allowing 

establishment and subsequent blood feeding. Lastly, this study had a short infection 

period (4 weeks) that might have not been enough time for anemia to develop.

Because depletion was not achieved until day 12 o f depletion, 

lymphoproliferation assays were done on day 10 to determine the effect o f  mAb on 

T lymphocyte functionality. The results o f  these tests showed that there was a 

decreased functionality o f  T lymphocyte functionality o f  the lambs in the treatment 

group compared to those o f  the controls. These results concur with Howard et al. 

(1989) where the responses o f  PBMC preparations to ConA, PHA, and PW were 

significantly reduced in BoT4 (CD4+) depleted calves. These results may suggest 

that the coating o f  the lymphocytes by the mAb might have affected their 

functionality by altering the surface membrane. Considering the role o f  CD4+ T 

lymphocytes in resistance to H. contortus infection, the early on decreased 

functionality o f  CD4+ T lymphocytes observed might explain the higher 

establishment o f  nematodes in the treated group compared to the controls.

The results o f  this study suggest that CD4+ T lymphocytes are associated 

with the natural resistance o f GCN sheep to H. contortus infection.
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CHAPTER 6

GENERAL DISCUSSION

6.1. Discussion of the Results

Breeding for parasite resistance is one approach to overcome Haemonchus 

contortus infection because resistance has developed to almost every anthelmintic in 

the market. Epidemiological studies demonstrated that GCN sheep are relatively 

resistant to nematode infection and in particular to H. contortus (Lemarie et al., 

1987; Lemarie, 1988, Miller et al.;1993, Bahirathan, 1994; and Bahirathan et al., 

1996). In order to apply the benefits o f  a resistant breed in a successful breeding 

program, an understanding o f  the mechanism underlying resistance or susceptibility 

to infection is essential. One approach for determining what mechanisms are 

involved is the use o f corticosteroids to suppress acquired immunity in resistant 

sheep. In a  number o f  studies, sheep treated with a corticosteroid (dexamethasone) 

lost resistance to further GI nematode challenge (Presson et al., 1988; Miller et al., 

1985; Huntley et al., 1992; Mattews et al., 1979; Winter et al., 1997). In accordance 

with these studies, our studies demonstrated that neonatal and post-weaned lambs 

treated w ith corticosteroids lost their natural resistance to H. contortus infection. 

This loss o f  resistance was mainly characterized by higher FEC and nematode 

burdens, and lower PCV in the treated lambs compared to the control lambs after 

natural (neonatal) or experimental (post-weaned) H. contortus challenge. Gill 

(1991) demonstrated that a resistance genotype o f  Merino sheep to H. contortus 

infection was attributable to an acquired immune response. In that study, after a 

secondary infection, resistant lambs had significantly lower FEC and nematode
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burdens than random-bred susceptible lambs. In our study, post-weaned lambs were 

previously exposed to H. contortus infection, therefore, it may be suggested that 

resistance o f GCN lambs to H. contortus infection can also be attributed to an 

acquired immune response. The effector mechanisms that participate in an acquired 

immune response are complex including activation o f  parasite-specific T 

lymphocytes, antibodies and mast cells and eosinophils. The T lymphocytes do not 

act directly on the parasite but exert their influence by providing help for antibody 

production and by mediating a  variety o f inflammatory reactions and 

physicochemical changes in the gut. Initiation, regulation, and expression o f  these 

responses is under tight genetic control and aberration in any one of these responses 

could impair the ability o f  the host to mount an effective immune response against 

parasitic infection (Wakelin, 1985). Immediate hypersensitivity reactions involving 

mucosal mast cells, globule leucocytes and eosinophils have been considered an 

important effector mechanism in the rejection of incoming larvae, as well as 

established nematodes following a challenge infection (Miller, 1984). 

Corticosteroid treatment has been shown to reduce the number of these cells with 

the subsequent loss o f resistance to nematode infections (Jackson et al., 1988; Miller 

et al., 1985; Presson et al., 1988; Winter et al., 1997). Winter et al. (1997) 

demonstrated that dexamethasone treatment resulted in decreased peripheral 

eosinophilia and loss o f  resistance to Nematodirus battus infection in Iambs. In the 

post-weaned lamb study, dexamethasone treated lambs also had significantly lower 

eosinophil counts compared with the control group. Whether the loss o f  resistance 

to H. contortus infections in this group was due to decreased eosinophil numbers 

cannot be determined.
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Dexamethasone treatment also resulted in a  decreased number o f 

lymphocytes in both neonates and post-weaned lambs compared to the controls. 

Cohen and Duke (1984) indicated that glucocorticosteroids such as dexamethasone 

cause lymphocyte death by activating a calcium-dependent endonuclease that 

rapidly and extensively degrades the DNA. The substantial decreased in the 

lymphocyte count seen in the treatment groups might have been a result o f  the toxic 

effect that dexamethasone has on the lymphocytes. T lymphocytes proliferate within 

the mesenteric lymph nodes in response to GI nematode antigens during infection 

and release a  variety o f  lymphokines that are involved in amplification, recruitment 

and differentiation o f  inflammatory cell types, and antibody producing cells. 

Grencis et al. (1985) demonstrated that immunity  to Trichinella spiralis in the 

mouse is a strongly thymus-dependent phenomena. In another study, Katona et al. 

(1988) indicated that the induction o f  polyclonal IgE reponse, intestinal mucosal 

mast hyperplasia and spontaneous cure o f  Nippostrongylus brasiliensis infection are 

all dependent on T lymphocytes o f the helper phenotype. Accordingly, Miller et al. 

(1985) reported a profound reduction in the number o f  mast cells and globule 

leukocytes in normal and hyperimmune sheep treated with corticosteroid. That was 

associated loss o f resistance to H. contortus infections. This study showed that GCN 

lambs treated with dexamethasone had a decline on their lymphocyte counts and 

were rendered suceptible to H. contortus infection. It might be suggested that the 

decrease o f  lymphocyte numbers affected the mucosal mast cell population and 

subsequent immune exclusion of incoming H. contortus infective larvae. The result 

o f  this would be a higher establishment o f nematodes seen in the dexamethasone 

treated groups compared to the control groups. Results then suggest that T
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lymphocytes appear be associated with the natural resistance to H. contortus 

infection in GCN sheep.

There are a number o f  studies that have indicated that protective immunity 

against GI nematode infection is CD4+ T lymphocyte dependent. Urban et al. (1991) 

showed that CD4+ T lymphocytes regulate host protective immunity, nematode 

fecundity, and IgE levels in Heligmosoides polygyrus infection. Vos et al. (1983), 

demonstrated that athymic mice was unable to mount a humoral immune response 

against T spiralis and the subsequent expulsion o f adult T. spiralis was impaired, 

indicating a T lymphocyte dependency in the immune response to this nematode. 

Protective immunity against H. contortus has also been demonstrated to be CD4+ T 

lymphocyte dependent (Gill et al., 1993; Karanu et al., 1997). To further confirm 

that CD4+ T lymphocytes were involved in resistance o f  GCN sheep to H. contortus 

infection, GCN lambs were depleted o f their CD4+ T lymphocytes. Gill et al. 

(1993) indicated that CD4+ T lymphocytes are responsible for the generation of 

mucosal mast cell hyperplasia, tissue eosinophilia and and-Haemonchus antibody. 

In that study, administration o f  anti-CD4+ lymphocyte monoclonal antibody to 

genetically resistant Merino sheep completely abrogated their expression o f genetic 

resistance. The results o f  this study concur with that study as GCN sheep depleted 

o f  their CD4+ T lymphocytes, were rendered susceptible to H. contortus infection as 

indicated by higher FEC and higher nematode burden in the depleted lambs 

compared with those o f controls. Although host responses associated with resistance 

to H. contortus were significantly decreased in the treated group, there was no 

difference in antibody titer to H. contortus WWA between groups. One explanation 

may be that the dose o f monoclonal used in our study was not enough to eliminate T
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lymphocytes in the lymphoid organs and these lymphocytes can still provide help to 

B cells to produce antibodies. Naessens et al. (1998) indicated that the dose o f 2 mg 

anti-CD4+ mAb/kg body weight was necessary for efficient elimination o f  T 

lymphocytes in the lymphoid organs o f cattle. The dose (2 mg total) used in this 

study did not deplete CD4+ T lymphocytes in the lymph nodes as shown by the high 

percentage o f CD4+ T lymphocytes present in the mesenteric lymph nodes at 

necropsy o f  the treated lambs. Lastly, the restoration o f memory function might 

have influenced the antibody responses in treated Iambs. The return of 

immunological memory function in peripheral blood after cell depletion and 

recovery might be the result of: 1) survival o f  some memory CD4+ T lymphocytes at 

sequestered sites o f  the body, 2 ) persistence o f antigen in a form that could stimulate 

naive CD4+ T lymphocytes, and 3) the memory cells are less prone to elimination 

than naive cells (Naessens et al., 1998). Regardless which o f  these could have 

occurred, treated lambs showed similar antibody production to H. contortus WWA 

than control lambs. Whether these antibodies are important in resistance o f  GCN to 

H. contortus infection cannot be concluded from this study. Gill (1993) showed that 

depleted lambs had lower antibody titer than control lambs and this was associated 

with abrogation o f  resistance to H. contortus infection. These antibodies were 

detected with H. contortus larval antigens and it may be suggested that antibodies to 

larval antigens but not antibodies to adult nematodes (as used in this study) are 

important in resistance o f  GCN to H. contortus infection. In conclusion, GCN lambs 

depleted o f their CD4+ T lymphocytes were rendered more susceptible to H. 

contortus infection as evidenced by higher FEC and nematode burden seen in the 

depleted lambs compared to the control lambs. The results indicated that T
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lymphocytes and in particular CD4+ T lymphocytes are associated with the natural 

resistance o f GCN sheep to H. contortus infection.

6.2. Future Studies

Another depletion study needs to be done using a  complement-binding mAb 

in order to address the slow clearance o f  CD4 T lymphocytes observed in this study. 

It would be expected that abrogation o f  the resistance o f  GCN sheep to H. contortus 

infection after treatment with such a mAb will also support the findings.

Evidence presented in this study indicated that CD4+ T lymphocytes are 

associated with the immune response o f  GCN sheep to H. contortus infection. CD4+ 

T lymphocytes, also known as helper T cells, produce different cytokines according 

to the pathogen involved. Thl cytokines, including IL-2 and EFN-y, are involved in 

protection against intracellular pathogens, whereas Th2 cytokines, including IL-4 

and IL-10, are required for protection against extracellular pathogens. A Th2 type 

response is a common feature in GI nematode infection and is characterize with the 

production o f IL-4, EL-10, EL-13 and EL-5 that in turn will promote B lymphocyte 

differentiation, mastocytosis and eosinophilia creating an environment hostile to 

nematode survival (Else et al., 1998). The generation o f  inflammatory responses in 

the GI tract, alterations in the physiology and antibody mediated interference o f 

feeding, will result in damage o f nematodes and rejection from their niche within 

the host. Canals e t al. (1997) indicated that calves infected with Ostertagia 

ostertagi showed a substantial reduction in the transcription of IL-2 and EFN-y and 

an elevation o f the transcription o f EL-4, which are consistent with a Th2 immune 

response. Whether the same cytokines are the ones present in the immunity to H. 

contortus in sheep has not yet been characterized. Further research will be focused
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on the assessment and characterization o f cytokine profiles that are presented in 

immunity o f GCN sheep to H. contortus infection.

6.3. Conclusions

The results of this research have contributed to the better understanding of 

the mechanisms underlying natural resistance o f  GCN sheep to H. contortus 

infection. Understanding the mechanisms associated with resistance will help to 

improve progress in vaccine and drug development and will possibly help in the 

identification o f genes that are involved in resistance. The identification of these 

genes and the use of genetic manipulation will then allow improvement of breeds 

with good meat production traits and with parasite resistance for tropical and 

subtropical regions where H. contortus is a serious constraint.
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APPENDIX: TECHNIQUES AND REAGENTS

- Modified McMaster Technique
Two grams o f  feces were mixed with 30 ml o f saturated salt solution using 
an electric mixer. Once the feces were mixed into the solution, a sample was 
pipetted out and put into one half o f a McMaster slide. The sample was 
mixed again and another sample was pipetted out to the other side o f  the 
slide. The eggs on both sides o f the slide were counted and the total count 
was multiplied by 50 to obtain the eggs per gram.

- Saturated salt solution
In a  3000 ml beaker, 2500 ml o f  water was added to 500 g o f salt, water was 
added to make the final solution volume 3000 ml. The solution was stirred at 
low heat on a magnetic stirrer for 2-3 hours.

- ELISA Reagents 

Blocking Buffer
10 g (1%) Bovine serum albumin + 0.5 ml (0.05%) Tween-20, bring to a 
liter with phosphate buffered saline (PBS, pH 7.4).

Serum diluent
58.44 g (1M) NaCl + 1ml (0.1%) Triton X-100 + 10 g (1%) bovine serum 
albumin, then bring to 1 liter with PBS. Store the solution to 4°C and use 
within two weeks.

- FACS Reagents 

Lysing buffer
0.829 g N H 4 C I  + 0.109 g K H C O 3  + 0.037 g Disodium EDTA bring to 100 
ml distilled water. Adjust pH to 7.3 to 7.4. Store at room temperature and 
use within 24 hours.

Formaldehyde Fixative
A 2% formaldehyde stock solution is made by adding 2 g paraformaldehyde 
to 100 ml o f 1 X PBS (Ca2+ and Mg2+ free). Heat to 70°C in a fume hood 
until the paraformaldehyde goes into solution. Allow the solution to cool to 
room temperature. Filter through a 0.45 pm filter. Adjust to pH 1.2-1 A  using 
1 M  NaOH or 1 M HC1 as needed. Store in the refrigerator.

- Media for proliferation assays
RPMI-1640 + Sodium bicarbonate + HEPES + 2-mercaptoethanol + L- 
Glutamine + Penicillin + Streptomycin + 5% FBS.
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